Contact

NewBusFuel – economically sustainable hydrogen supply

By

March 5, 2018

Image titel:

Sources:

NewBusFuel – economically sustainable hydrogen supply

bus-station

Hydrogen refueling station with on-site electrolyzer, © WSW, Hydrogenics

Fuel cell buses have many advantages over their diesel counterparts, making them an attractive option for mass transit companies. A few examples are the complete absence of local emissions, the greater flexibility in choosing a primary energy carrier and, depending on the source of the hydrogen and the use of renewables, considerable potential for reducing carbon dioxide levels.

The many years spent on research and development and extensive trial periods in demonstration projects such as CUTE, HyFleet:CUTE, CHIC and HyTransit have turned up several holes in our knowledge about large-scale bus refueling. To fill in these gaps, the Fuel Cells and Hydrogen Joint Undertaking launched NewBusFuel, a project focused solely on the design of the relevant infrastructure.

Advertisements

Filling up buses is different from refueling cars. Not only do they need greater quantities and storage capacity, but they also require highly reliable and spacious installations, especially in urban areas, where most bus garages offer little room for additional equipment.

For a comprehensive analysis of infrastructure requirements and technological solutions, 13 teams made up of bus operators, hydrogen technology suppliers and other stakeholders channeled their activities during NewBusFuel to devise a plan for each of the 12 partner cities from 7 countries (see fig. 2).

Advertisements

e-journal

The result was a wide variety of technology choices, from on-site production through electrolysis (see fig. 1) and steam reforming to near-site and off-site methods. Approaches ranged from pipeline use to the delivery of compressed and cryogenic hydrogen (see fig. 3).

Subsequent interviews provided opportunities to smooth out the details of the solutions offered, avoid stumbling blocks and give timely feedback on practicality. This feedback was later turned into a number of recommendations for the targeted and efficient implementation of hydrogen infrastructures (see [2]).

Requirements and settings may contrast sharply from region to region, which means that the findings should be considered goalposts and not definite targets for real-word application. Nevertheless, they offer robust estimates for any kind of hydrogen station as early as the conceptual stage. More data will have to be gathered by studying each scenario individually.

The cost of hydrogen

A second objective of the project was to calculate hydrogen costs at the fuel pump, including their share in the construction and operation of the equipment. The authors of each case study had set their own cost targets, typically based on diesel use cases, which came to EUR 4 to EUR 6 per kilogram.

In three of those, the employment of several technologies led to estimates matching outcomes. Three other solutions resulted in EUR 6 to EUR 8 per kilogram of hydrogen, while the total cost in the remaining studies far exceeded cost limitations. To respect the confidential nature of the information, this article will refrain from listing which stations did or did not meet expectations.

Recommendations

Success or failure notwithstanding, all comparisons, and all methods used to optimize cost effectiveness proved useful for providing guidance on how to achieve cost reductions in hydrogen bus refueling (see [1]).

For example, some bus operators were not used to such a close alignment of infrastructures and fleets. This alignment, however, is vital for preventing or limiting excess capacity and keeping down costs. Likewise, changes needed to be made to the strategies for guaranteeing supply. One example is the recommendation that spare parts critical to operation be held in store. Additionally, contracts should state service response times, and modular systems could provide redundant capabilities. Whereas bus operators aimed for relatively high storage capacity early in the project, figures were, in most cases, later lowered, not least because of cost and space constraints.

Similar recommendations have been devised for technology suppliers in the hydrogen industry, for example, to improve the reliability and efficiency of their components.

Other factors, such as European and national rules, were analyzed in conjunction with their impact on a country’s infrastructure costs. For example, the stringent regulations on safety distance and the placement of firewalls between components had increased the total cost of the concept system in Italy by around EUR 500,000.

Conclusion

NewBusFuel has shown that hydrogen can be an economically viable and competitive option, depending on the design of the supply infrastructure. But, of course, hydrogen is not diesel. One may not need a reminder, but it is important to point out the drawbacks and benefits of the gas. They are crucial to arriving at a technologically and economically sensible solution, which is required not only when building vehicles, but also – or even more so – when designing new infrastructures. The more hydrogen a system will consume, the earlier it will pay off, for example, when using redundant capabilities to achieve synergies and distribute the work. Hydrogen is an ideal candidate for powering zero-emission buses that need to travel medium to long distances. In turn, the buses can become a secure and reliable source of large-volume sales.

Economic viability can be improved further through strict adherence to development and research cost targets, e.g., as part of NIP 2 and FCH2 JU. Recently, Ballard and Solaris had announced that they would offer buses at EUR 450,000 under certain conditions, namely acquiring more than 100 of the 12-meter-long vehicles. Their running costs of EUR 5 per kilogram of H2, consumption of 7 kilograms per 100 kilometers, or per 62 miles, and an additional EUR 0.35 for each kilometer are merely 12 percent above the ones for conventional diesel buses and are fast approaching their levels [3].

Written by: Dr. Benjamin Reuter, Dr. Michael Faltenbacher, both for thinkstep AG, Leinfelden-Echterdingen, Germany

Here are interesting and current articles on the topic of hydrogen – stocks and the stock market!

Economic prospects for companies in the hydrogen sector | Future, stocks & hydrogen companies on the stock exchange and more…

Which hydrogen companies will prevail in the competitive market in the long term? Get tips and cartwheels and learn more about risks or opportunities. Our stock market specialist and expert author Sven Jösting reports critically, independently and competently.

Mar 18 2024

Search for the ideal hydrogen storage

Interview with Thomas Korn, CEO of water stuff & sun Startup company water stuff & sun has...
Mar 15 2024

Is exponential growth slowing down?

Fuel Cell Industry Review 2022 Year 2022 saw fuel cell shipments creep up over 2021 numbers,...
Mar 11 2024

On the way to becoming a green hydrogen partner

Oman aims to score points with H2 infrastructure Wind, sun and loads of expertise – these...
Mar 07 2024

We can master a scale-up for green hydrogen

Interview with Dr. Kai Fischer, Director at RWTH Aachen The efficient scaling of green hydrogen...
Mar 07 2024

Frustration over continuing uncertainties

Interview with Jorgo Chatzimarkakis, CEO of Hydrogen Europe There is a lot that needs sorting out...
Mar 05 2024

“If ever there was momentum for hydrogen, it is now”

Interview with Dr. Jochen Köckler, chairman of Deutsche Messe “We’re bringing people together.”...
Feb 28 2024

H2Direkt: Blueprint for heating with pure H2

The energy providers Thüga und Energie Südbayern (ESB) as well as Energienetze Bayern have...
Feb 26 2024

Just switch over?

Hydrogen in the existing natural gas network Whether hydrogen contributes to the clean heating...
Feb 26 2024

Pilot plant for coating bipolar plates

At Fraunhofer FEP (Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und...
Feb 20 2024

55 MW electrolyzer to decarbonize Saarland

Hydrogen Regions series: HydroHub Fenne living lab The power plant site in Fenne, Völklingen, a...
Feb 20 2024

Chicken feathers as FC membrane material

Feathers from chickens or other poultry could in the future help make fuel cells more effective...
Feb 15 2024

SMEs demand more security

Guest article by André Steinau, CEO of GP Joule Hydrogen After all, the Ampel Coalition leading...
Feb 15 2024

Accelerated expansion of renewable energies

RED III is here – Elsewhere, the wait continues Progress is being made at EU level – albeit...
Feb 12 2024

Picea 2 relies on lithium instead of lead

HPS presents new product generation The company HPS Home Power Solutions has unveiled a new...
Feb 12 2024

H2 production by photocatalysis

The direct generation of hydrogen from sunlight has long been considered the most elegant solution...
Feb 05 2024

Regional instead of international

Hy-Fcell has it difficult asserting itself The aspiration of Landesmesse Stuttgart with Hy-Fcell...
Feb 01 2024

Hydrogeit Verlag turns 20 years old

Hydrogeit Verlag is proudly celebrating its 20th anniversary as a renowned specialist publisher in...
Jan 26 2024

Stracke other H2Now managing director

BMV Energy GmbH is entering the market as another player in hydrogen refueling stations. The...
Jan 26 2024

Starting points for a comprehensive hydrogen ramp-up

Industry congress GAT 2023 in Cologne To establish a functioning hydrogen economy, the entire...
Jan 26 2024

The industry highpoint in autumn

Hydrogen Technology Expo total success In autumn 2023 as well, the Hydrogen Technology Expo was...

0 Comments

Leave a Reply