Contact

The industry highpoint in autumn

The industry highpoint in autumn

Hydrogen Technology Expo total success

In autumn 2023 as well, the Hydrogen Technology Expo was again the event you had to be at. For the third time in a row, the British organizer Trans-Global Events Ltd was able to dramatically increase the number of exhibitors as well as visitors – which is why the trade fair halls of the Hanseatic city on the Weser (Bremen) will no longer be sufficient in 2024. The move to Hamburg this year is therefore inevitable and had been predicted early on by H2-international (see H2-international Feb. 2023).

The trend is unmistakable: More and more companies from the mechanical engineering, electrical and chemical industries are flooding the hydrogen market. Accordingly, a large number of completely new exhibitors could be found in the four trade fair halls in Bremen. Among them were numerous unknown names, but also heavyweights such as Saudi Aramco, ExxonMobil or ITM Power.

Advertisements

After 180 exhibitors in the first and 350 in the second year, this time there were over 550 – in 2024, there should be at least 100 more. The number of visitors increased from 5,000 in the previous year to over 10,000.

Moving towards mass production

Advertisements

Companies like the chemicals corporation Gore had explicitly “chosen this trade show in Europe” because “Europe is furthest along.” Nouchine Humbert, Global Marketing Director of W.L. Gore, told H2-international, “This is a market where we expect strong growth.” Referred to is particularly the electrolysis sector, because in comparison fuel cells need “many more square meters than electrolyzers.”

Sufficient production capacity is available to the North American company – in Japan. The production lines there are enough for another five years, asserted Rainer Enggruber, director of the division PEM/water/electrolysis products. Gigawatt announcements are therefore not a challenge for the membrane manufacturer, it was confidently stated.

New tubular reactor

An innovation was shown by the Hebmüller Group. Sales director Marc Hebmüller presented the prototype of the HydroGenMHD (see Fig. 1), an H2 generation device from One Scientific of Johnson City, Tennessee. The company Hebmüller is the European licensee of the US system developer that developed this compact tubular catalyst, in whose magnetohydrodynamic chamber hydrogen is generated upon splitting off of oxygen from water vapor.

Marc Hebmüller explained: “This innovative technology employs a unique system where superheated steam is subjected to a catalyst and intense magnetic fields generated through the MHD process. These magnetic fields induce controlled plasma dynamics within the feedstock, facilitating the dissociation of molecules into hydrogen gas and oxygen gas.”

Stack based on circuit boards

A completely new concept for the production of fuel cells was presented by Bramble Energy: a fuel cell stack based on printed circuit board technology. The British company founded in 2017 relies here on the plastic FR4, which provides the necessary stability, and copper as a heat as well as electricity conductor. Between two circuit boards is one membrane each, which means that bipolar plates can be dispensed with entirely. Instead, a monopolar plate constitutes a single cell, of which several are then stacked.

The technology readiness level Carsten Pohlmann, director for business development (see Fig. 2), puts at TRL 9, and the price per kilowatt at 100 USD. First tests in a Renault demonstrator and with a 100 kW system for a double-decker bus are already underway.


Carsten Pohlmann presented in Bremen for the first time the circuit board cell from Bramble

The next Hydrogen Technology Expo Europe will take place October 23 and 24, 2024 on the fairgrounds of Messe Hamburg. It therefore will overlap by one day with WindEnergy.

 

Axel Funke moving to Apex

Axel Funke moving to Apex

The Apex Group is expanding its management team from five to six people. Starting the new year, Axel Funke will be chief technology officer, and will be responsible for the division project handling and engineering. The 58-year-old mechanical engineer has been active in plant engineering for 30 years, and previously worked for companies such as Bilfinger, Thyssenkrupp Industrial Solutions and Linde. He directed, among other things, large international projects in the energy sector and, for example, while at Thyssenkrupp Industrial Solutions participated in the planning and design of the project HyLIOS, which included the delivery of a 2.2‑GW electrolyzer to Neom, Saudi Arabia.

Apex has belonged for one year to the Exceet Group. Roland Lienau, chairman of Exceet, said: “Following the recent appointment of Bert Althaus as CFO, the management is now staffed across all areas with top personnel. Also on the operational side, Apex has hired more than 20 engineers since the acquisition by Exceet in January 2023. We are therefore equipped to realize our growth strategy.”

Advertisements
Hyzon Motors: Sensible withdrawal from Europe

Hyzon Motors: Sensible withdrawal from Europe

The numbers for the third quarter and the outlook promise a very exciting future for Hyzon Motors and its 200‑kW FC modules for trucks. Series production will begin in the second half of 2024. The activities will be concentrated at one location in the USA. Hyzon with its subsidiary is withdrawing from Europe. That is the right step, since a young company should concentrate on the market that is most important to the company, in order to use the limited capital resources in a targeted way.

Hyzon, however, is still looking for a fulfillment partner in Europe who can independently bring to use the company’s FC stacks, comparable to the partnership with Fontaine Modification in the USA or one like Quantron with Ballard Power. Hyzon is focusing on the USA and Australia/New Zealand, where a hydrogen-powered waste collection truck was recently delivered to Remondis. The FC modules are produced in the USA, which makes sense given the subsidies.

Advertisements

Hyzon will also benefit from the development of the H2 hubs, because the MACH2 project in the Midwest lies in the vicinity of its own production facility and belong to the projects of the DOE subsidized as part of the seven billion-dollar hydrogen hub program (awards of one billion dollars for each hub).

At the same time, Hyzon announced that they have agreed with the SEC to a payment of 25 million USD, payable in three installments over the next few years. This concludes this unspeakable issue, which is based on the misconduct of the former board of directors (accounting scandal). The cash burn per month can be massively reduced, and for ramp-up of module production only about five million USD is required. At the end of the third quarter are still 137.8 million USD in the bank, at a capital requirement of 10 million USD per month.

Advertisements

With the parent company and majority shareholder Horizon from Singapore, the IP license agreement was able to be extended until 2030 and could also be extended to other activities: So Hyzon is also planning to introduce new 300‑kW FC single stacks into the stationary energy supply of data centers and hospitals. Ballard Power and Bloom Energy are already active in this area.

Parker Meeks, CEO of Hyzon, responded to a question about why his company was focusing exclusively on fuel cells and not electric vehicles: „The experience with battery-electric trucks for many has been one in which the usable range is not what they imagined, especially when going uphill, which is the case even in the Los Angeles Basin. If you know the area, if you’re going somewhere where there’s a long distance, you’ll probably have to drive up a hill. Fuel cell trucks do not lose power, and this is the crucial factor that makes them particularly suitable for heavy transport as opposed to transporting drinks.”

Summary: In the USA Hyzon is working on establishing and expanding capacities in order to ramp up production of the 200‑kW FC modules. The partnership with Fontaine Modification suggests that a large sales market is emerging here, as Fontaine rebuilds trucks or retrofits vehicles and Hyzon as a technology partner in this comes perfectly into use with its FC modules. In this context, we can also well imagine that Fontaine through parent company Marmon Holdings has a direct stake in Hyzon. There will surely be capital measures (new issue of shares), and the entry of a strategic partner would be the ideal way to achieve this.

A highly speculative, very interesting investment. Hyzon is suitable as an admixture to Ballard Power and Nikola Motors, as these three companies can be jointly assigned to the area of fuel cells in commercial vehicles.

Disclaimer

Each investor must always be aware of their own risk when investing in shares and should consider a sensible risk diversification. The FC companies and shares mentioned here are small and mid cap, i.e. they are not standard stocks and their volatility is also much higher. This report is not meant to be viewed as purchase recommendations, and the author holds no liability for your actions. All information is based on publicly available sources and, as far as assessment is concerned, represents exclusively the personal opinion of the author, who focuses on medium- and long-term valuation and not on short-term profit. The author may be in possession of the shares presented here.

Against the German Angst

Against the German Angst

The current situation of the German government appears to be a state of desolation: The constitutional court did not play along as hoped – albeit by the narrowest of margins – and has awarded the Ampel Coalition a 60-billion-euro gap in the budget.

Out of this, a desolate situation for the energy industry could also rise, since many projects that were to be financed via the planned fund for climate action and clean energy Klima- und Transformationsfonds (KTF) have come into question, justifiably or not. The uncertainty is great.

Advertisements

The situation beforehand was already tense. Decisions from Brussels, for example, have had a long wait time. This was the case with the EU energy directive RED II, RED III and also the IPCEI projects – even though RED III was published on October 31, 2023. If things go well, at the end of the year still, the 37th ordinance on the implementation of the German emissions reduction act (37th BImSchV) could be updated – after twelve years.

This waiting has not exactly encouraged many investors to make their money available for projects for the future. The FID (final investment decision) especially for numerous electrolysis projects is still pending, because the framework conditions are not seen as sufficiently secure.

Advertisements

Not without reason, numerous companies took part in the tender for the Important Projects of Common European Interest. In doing so, they are relying on EU member state funds to reduce their own financial risk.

The price they have to pay for these “gifted” state funds is that they have to abide by the giver’s rules. It also means that they have to put up with it when a decision takes longer in Brussels.

The loud lamentation therefore has a bit of hypocrisy to it, since after all nobody forced them to apply for an IPCEI. They could all have started much earlier on such projects, even at their own risk. But now some of them are sitting there complaining that their originally planned IPCEI project is no longer viable in the form applied for, although it was they themselves who had decided to take this path.

Again and again in this context have there been warnings that companies based in Germany could move abroad to where the framework conditions are supposedly better. Perhaps there are individual companies that will actually take this step. Exactly what their motives are, we will probably never know, but it should be clear that such a decision does not depend solely on the processing time in Brussels but is multifactorial.

And yes, one or two projects will probably never be realized – for whatever reason. Westküste100 is such a project. As a real-world lab it has done valuable work, but “H2 Westküste GmbH will not make a positive investment decision for the planned electrolyzer” can be read on their homepage. And “The reason for it is especially the increased investment costs.”

That may hurt one or the other player, since such a scenario may also threaten other projects. But isn’t it better to stop a recognizably uneconomical project at the right time than to desperately hold on to it and to go through with it against your better judgment? Isn’t it better to acknowledge the altered framework conditions by the now two wars and current energy emergency, and to recalculate?

Because Westküste100 won’t continue does not mean that the energy transition has been canceled, that we are not switching to renewable energies and hydrogen after all. Just because a few companies will produce elsewhere in the future does not mean that value creation will no longer take place in Germany.

The political commitment is there: German economy minister Robert Habeck as well as numerous minister-presidents of the federal states recently emphasized the enormous importance of H2 projects in particular. In addition, a startup scene has now established itself in Germany, which is pushing its way onto the market with new, innovative ideas. Here, investors are called to recognize their potential and make advance investments now at their own risk – without subsidies.

I don’t want to refer to the American e-car manufacturer again, but there exist – even in Europe – players who with a little instinct or a lot of money can make new technologies marketable at the right time.

The energy transition is a gigantic challenge – for everyone. Who, if not Germany, would be better placed to exemplarily show the way and offer suitable products? Instead of seeing the enormous potential that lies in this global upheaval, however, many in this country remain stuck in “German Angst.” It’s bad enough that this term (according to Wikipedia, “typical German hesitancy”) is now commonplace around the world.

The motto should therefore be: “Recognize and leverage potentials to shape a sustainable future together.”

Better cleaning for maximum performance

Better cleaning for maximum performance

Effective and efficient cleaning of metal bipolar plates

Low weight and volume, good cold-start capability and relatively inexpensive series production are all benefits associated with metal bipolar plates. These key elements in fuel cell stacks are responsible for handling the essential tasks of supplying media, creating an electrical connection and cooling. Their ability to perform these well depends on factors such as the cleanliness of both the material and the joined plate. Ecoclean has trialed a variety of processes to find the most effective and economical method of cleaning.

Advertisements

Fuel cells are among the key technologies for enabling the electrification of vehicle propulsion systems and also have a major part to play in the energy transition as a stationary energy source. At the heart of a fuel cell system are the bipolar plates or BPPs that are connected to the stacks. BPPs consist of an anode and a cathode with a proton-conducting film sandwiched between them.

BPPs fulfill a variety of tasks: They physically and electrically connect the anode of a cell to the cathode of the neighboring cell. They are also responsible for conveying the reactant gases – hydrogen on the anode side and air on the cathode side. For this purpose, the plates are designed with flow fields on both sides whose form is crucial for the performance of the overall system. In addition, the BPPs control the release of electrical energy and the removal of water vapor. Another function they perform is the management of heat.

Advertisements

Plates can be manufactured from different materials: high-concentration graphite, graphite-polymer composites and metals. Metal bipolar plates offer advantages particularly when it comes to their use in automobiles. This is because they are low in weight and volume and have a good cold-start capability. What’s more, metal BPPs offer the potential for comparatively cost-effective series production which can be further improved through scaling.

Clean for quality and efficiency

The anode and cathode of metal BPPs are predominantly made from stainless steel alloy foils with a thickness of 0.1 mm to 0.2 mm. The material is usually rolled off a coil whose surfaces are contaminated during manufacturing by different rolling and drawing greases, oils, emulsions and other unknown impurities. In the next step, the anode and cathode foils are precisely reshaped in a mechanical or hydroforming process and the outer contours are cut, for instance, by punching or laser cutting.

Residual machining fluids (oils and/or emulsions) are also left on the plates following these processes. When the anode plate and cathode plate are subsequently joined, commonly in a laser welding process, this results in smoke residue and oxide being left behind. Finally, the bipolar plates are coated. A cleaning stage must be performed prior to the plates being coated, if not earlier, to ensure a homogeneous coating with good adhesion.

For tightly packed fuel cells, which are required to achieve a high output in minimal space, it is recommended that cleaning takes place before the joining stage. This prevents impurities becoming trapped between the anode and cathode which can become loose when the temperature rises during operation and block the microstructures of the flow fields. This would lead to a decrease in performance. At the same time, the intermediate cleaning stage will reduce the surface contamination from smoke residue and oxides during the laser welding process.

Choosing the right process

A key challenge in cleaning metal BPPs is the presence of usually invisible chemical film residue on the surfaces. This may be oils, greases, emulsions or other chemicals that are often of unknown composition. These unidentified contaminants require a cleaning solution that ensures they are removed reliably and appropriately. This is why German company Ecoclean has carried out experiments using laser and carbon dioxide snow-jet cleaning, wet-chemical solvent cleaning as well as steam-jet cleaning.


Fig. 2: Steam cleaning works due to a combination of steam, a precise quantity of fluid for the job, high-speed air flow and an adapted nozzle system

Both the laser and carbon dioxide snow-jet methods effectively removed smoke residue, oxide, chemical film contamination and particles from the welded seams of the joined bipolar plates with pin-point precision and within a matter of seconds. Good results were also recorded for both processes when cleaning whole BPP surfaces. Because the laser has to travel over the surface line by line, this option is time consuming. In the case of carbon dioxide snow-jet cleaning, the system can be fitted with an appropriate number of nozzles, thereby allowing for rapid treatment of the entire surface.

Wet-chemical cleaning with solvent using a flood method was able to successfully remove oils, greases and particles. However, it is not suitable for cleaning off emulsions, smoke residue and oxides. Wet-chemical immersion cleaning with water-based media is only possible to a limited degree due to the drying required and the considerable effort involved.

Good results were also achieved when using steam jets to clean chemical film and particulate contamination as well as smoke residue and oxides. For this process, the cleaning effect comes from a combination of steam, a precise quantity of fluid for the job, high-speed air flow and an adapted nozzle design. The cleaning procedure also takes just a few seconds.


Fig. 3: Analysis from infrared spectroscopy showed that steam cleaning completely removed the residue of the reference contamination

Controlled cleaning validation

Cleaning results are verified using the surface tension through the measuring techniques of contact angle measurement and test inks, fluorescence measurement and infrared spectroscopy. The fluorescence measuring technique proved to be unsuitable due to the absence of fluorescent contaminants. In terms of the input measurements for surface tension, the bipolar plates produced very different contamination values which were significantly reduced after cleaning.

A general statement about whether the component has a sufficient level of cleanliness for the next processing step cannot be made. For this to be possible, it would be necessary to determine appropriate process-specific requirements. For infrared spectroscopy, all residue on the test pieces (coil sections and BPPs) was first removed to establish a reference cleanliness. After the surfaces of the test pieces were analyzed using infrared spectroscopy, the test pieces were contaminated with reference contamination before being cleaned and then reanalyzed. This analysis then showed that steam cleaning managed to reliably remove chemical film contamination.

The cleaning trials and tests outlined were carried out in Ecoclean’s test center in Monschau by experts in component cleaning and surface treatment using the methods described as well as other techniques.

Automated cleaning

For an efficient workflow, it is possible for cleaning to be integrated prior to joining and/or coating in production lines. Automation can be adapted and optimized to suit the specific requirements and conditions of each production line.

Ecoclean is part of the SBS Ecoclean Group which develops, produces and distributes cutting-edge equipment, systems and services for industrial component cleaning and surface treatment. Its solutions help companies around the world from the automotive and supply industries as well as the highly diversified industrial market to implement efficient and sustainable production processes. The group has an international presence with 12 sites in nine countries and employs more than 900 staff.