Contact

Plug Power – Price jumps with many questions

Plug Power – Price jumps with many questions

The Plug share price fell quickly to under 3 USD (2.50 USD at low) and then rose again to over 4 USD. At a price of less than 3 USD, it was possible to build up excellent trading positions (see H2-international Feb. 2024). Is there now a turnaround in the price trend or was this just a brief flare-up before the downward trend continues? Or will there even be an upward trend reversal?

There is a great opportunity for Plug Power to receive a credit (loan) totaling 1.6 billion USD from the US Department of Energy (DOE) as part of the Inflation Reduction Act. This is to come in the third quarter, although there are also rumors that it could be approved much earlier, but I won’t take part in this speculation. In this ideal scenario Plug will then have sufficient capital to establish and expand several production facilities, for example in Tennessee and New York, and start production there. The stock market will value this – if it happens – very positively: with higher share prices.

Advertisements

But a loan is borrowed capital that has to be repaid. What are the conditions? How high is the interest or coupon? What are the repayment arrangements? Will the loan be paid out immediately in full or in installments and with target definitions (milestones)? What is Plug doing with the money? If there is no clarity about this or the loan is not approved in the first place, then the stock market will be miffed or react in disappointment, with the consequence of falling share prices.

Parallel to this is running a share placement program (at-the-market) worth 1 billion USD. Of this, already over 305 million USD, through the placement of 77.4 million shares, have flowed into Plug’s account. This will also correlate positively with the DOE credit: If this is granted, Plug’s share price will – even if possibly only for a short time – climb, and this then enables the perfect placement of shares via ATM in the ramp-up. This money from the ATM program can be used to solve the short-term liquidity problem, since the cash on hand lay at just 135 million USD December 31, 2023.

There are also other possible difficulties, because the US Treasury Department is defining how hydrogen must be produced in order to receive the subsidy of up to 3 USD per kg. Plug is relying very heavily on this funding, but there are still questions: From which location must the regenerative energy come from, in what amount and at what point in time? And at which location must the electrolysis take place? With this are, like in the EU, a series of bureaucratic hurdles – unfortunately.

Disappointing figures

What are these figures: The turnover in fiscal year 2023 amounted to, instead of the expected 1.2 billion USD, only 891 million USD. The loss even amounted to 1.4 billion USD, which corresponds to a minus of 2.30 USD per share. The press conference on the results in March raised more questions than it answered.

For example, the material inventory is to be reduced by a value of 700 million USD via the delivery of finished products to customers. Whereas in 2023 only 400 million USD was invested in this area, no more capital is to flow into here in 2024.

The production at locations such as Georgia, Tennessee and Louisiana is to be ramped up and contribute to an increase in the profit margin. These sites are already capable of producing liquid hydrogen for the company itself and supplying it to customers. The Texas and New York sites will only be continued once the DOE loan has been approved, as otherwise they tie up too much liquidity.

In addition, there is to be price raisings (among others for H2, stacks and electrolyzers) and a cost-cutting program of 75 million USD. Liquid hydrogen is currently still being purchased, which entails losses, but is to be replaced by self-produced hydrogen.

After Plug Power – I reported in detail – established production facilities in the USA and internationally in a variety of ways and thus severely strained liquidity, the planned cost-cutting program amounting to 75 million USD is now to take effect. Whether this amount will be sufficient may be doubted, however, because it seems downright ridiculous in view of the Plug’s liquidity problems and comes much too late. That the company has started to produce liquid hydrogen at several locations and has delivered to customers like Amazon and Walmart is good news for now, but will at first have little influence on the company figures.

With orders for electrolyzers too has Plug scored, but it will be some time before significant sales and thus profits are visible here. That the Saudi sovereign wealth fund Public Investment Fund (PIF) at the end of 2023, with the selling of 5.67 million shares, has completely withdrawn from Plug is not a good sign.

Summary

Words must now be followed by deeds, because all too often very full-bodied forecasts have been made. That Plug will bring partners on board for some projects seems very likely. And also the spin-off (partial sale) of some units is conceivable, if liquidity cannot be adequately presented soon. However, there is currently no need for action. Plug is clearly on my watch list, though, as the company is active in the right markets at the right time. Once the financial problems have been solved, there will possibly also be changes in management, which has lost trust, and Plug will continue on its way.

Over 170 million shares sold short (short interest, status mid-February) are dubious, however, as there is massive speculation against the company or – keywords Amazon and Walmart (warrants) – a form of hedging is being used – no guarantees. All the same, already 10 million shares were short covered in January/February. On the other hand, it is this short interest that can sometimes have a price-driving effect via the covering (short squeeze) when good news is reported. Everything has two sides.

There is still no need for action, however, since the publication of the figures for the first quarter is pending. That various business media in Germany count Plug Power among their top investments in hydrogen befuddles me, though. There are more convincing H2 investments.fa

Disclaimer

Each investor must always be aware of their own risk when investing in shares and should consider a sensible risk diversification. The FC companies and shares mentioned here are small and mid cap, i.e. they are not standard stocks and their volatility is also much higher. This report is not meant to be viewed as purchase recommendations, and the author holds no liability for your actions. All information is based on publicly available sources and, as far as assessment is concerned, represents exclusively the personal opinion of the author, who focuses on medium- and long-term valuation and not on short-term profit. The author may be in possession of the shares presented here.

Author: Sven Jösting

Hydrogen economy gaining speed

Hydrogen economy gaining speed

Trade fair guide for Hannover Messe 2024

AI and hydrogen are the focus of this year’s Hannover Messe. H2‑international’s trade fair preview is showing what’s new to see at the Hannover Messe and especially Hydrogen + Fuel Cells Europe.

The transformation of industry towards climate neutrality is gaining more and more momentum. Which is why the decarbonization of industry is also at the center of interest at this year’s Hannover Messe. The energy industry has a crucial role to play in this. The transformation is based on two drivers: artificial intelligence (AI) and hydrogen. Because it is clear that a climate-neutral industry without a hydrogen economy is inconceivable.

Advertisements

Over 500 exhibitors on the topic of hydrogen will be represented at Hannover Messe 2024. Most of them in the context of the Hydrogen + Fuel Cells Europe fair in Hall 13. Also this year’s partner country, Norway, with its motto “Pioneering the Green Industrial Transition,” is putting carbon-neutral production and new digital solutions in focus at its hydrogen pavilion (Stand D30). Likewise under the banner of the hydrogen economy is the Norwegian-German energy conference “Renewable Dialogue – North Sea Energy Hub,” which will take place in the Convention Center April 23, 2024. This conference particularly aims to concretize business models of the H2 economy. Hydrogen is also a central component of the All Electric Society Arena. This arena is directly connected to the ZVEI stand in the middle of Hall 11, Stand B58.

What products, services and business models the hydrogen economy already offers today will be shown by exhibitors of Hydrogen + Fuel Cells Europe. Important players and innovations H2‑international is introducing in this trade fair preview.

Fuel cell technology

Proton Motor Fuel Cell GmbH is presenting at the Hydrogen + Fuel Cells Europe its fuel cell system HyModule S4. It is conceived for stationary applications in residential buildings and small industrial complexes and as an emergency or off-grid power supply. The device offers a lower power range of 4.1 kWel and an output voltage range of 28 to 55 VDC. The H2 supply pressure is 1.5 to 7 bar. The HyModule S4 uses the liquid-cooled FC technology HyStack 200 from Proton Motor and can be used in an ambient temperature of 5 to 40 °C.


Fig. 2: The FC system HyModule S4 for stationary applications,
Source: Proton Motor, Proton Motor, Halle 13, Stand E34

The automotive group Honda is coming to Hannover with the prototype of its new fuel cell module. The module is designed for H2 cars, commercial vehicles, construction machinery and stationary power generators. The fuel cell in compact dimensions has a high output power and a fast start-up time, even in environments with low temperatures. For use in heavy-duty commercial vehicles, Honda has already begun, together with Isuzu Motors, to test the fuel cell drive of the next generation. A prototype is already out on public roads. The launch of a series model is planned for 2027.


Fig. 3: The FC module FCS-26 from Honda is also suitable as a clean and quiet emergency power source,
Source: Honda
Honda, Halle 13, Stand C56

SFC Energy, manufacturer of hydrogen and methanol fuel cells, has expanded the performance class of its mobile solution Efoy H2Genset. The mobile solution is intended as an alternative to conventional diesel generators. It can be used for a multitude of applications, e.g. on construction sites, at events, at festivals and in remote locations with temporary power requirements.


Fig. 4: Mobile fuel cell device for use on construction sites or at festivals,
Source: SFC Energy, SFC Energy, Halle 13, Stand C04

Ballard Power Systems does not have its own presence at this year’s Hannover Messe. However, the company is part of a Canadian delegation participating in a joint presentation of over 300 exhibitors from 25 countries in the field of hydrogen and fuel cell technology. Currently, there are nearly 4,000 trucks and buses worldwide driven with fuel cells from Ballard (see also p. 61). The fuel cells are also used in several hydrogen ships, trains and hydrogen projects with global partners. At the Hannover Messe, Ballard will be temporarily represented in the Canadian pavilion by an expert in fuel cell technology.

Ballard Power, Halle 13, Stand D40

Hydrogen supply

AEG Power Solutions equips hydrogen plants with direct current supply systems. The company’s electrolyzer power supply is designed to provide stable current and power over a wide voltage range. It is suitable for the production of green hydrogen with fluctuating renewable energy sources, as these electrolyzer converters offer high DC dynamics and high efficiency in terms of grid conformity, even in partial load operation. To reduce space requirements, installation time and costs, AEG Power Solutions offers scalable plug & play solutions. These solutions can comprise up to eight DC-3 modules in parallel, which deliver up to 16 MW, 1,500 VDC and 25.6 kADC.


Fig. 5: The plug & play electrolyzer power supply comprises up to eight DC-3 modules, 
Source: AEG Power Solutions
AEG Power Solutions, Halle 13, Stand B45

The company Siqens has developed an electrochemical hydrogen separation technology (EHS). In contrast to the electrolysis of water, the company wants to use it to produce hydrogen from biogas, methanol or methane. According to the manufacturer, the EHS process also allows the separation of hydrogen from natural deposits. Another application is the separation of hydrogen that will be transported via the natural gas grid.


Fig. 6: The EcoCabinet from Siqens,
Source: Siqens, Siqens, Halle 2, Stand A42

Fuel cell and electrolyzer components

The new humidifier HumidiPower from Pentair is designed for PEM fuel cells. It acts as a heat and moisture exchanger. According to the manufacturer, the device has a patented, spiral-wound hollow fiber design, to ensure efficient moisture transfer to air and other gases. A low pressure drop should minimize energy consumption. The moisture removed from the exhaust gas of the fuel cell is reused in the purge gas.


Fig. 7: The HumidiPower ensures sufficient moisture in the PEM fuel cell,
Source: Pentair, Pentair, Halle 13, Stand F46

Parker Hannifin is showcasing the latest developments in the field of fuel cell technology at its stand. At an interactive table, visitors can take a look inside an electrolyzer receptacle and search for Parker components in it. New is the horizontal gas filter Peach Gemini PuraSep. The filter contains two stages and two drums each. The upper drum is used to separate solids and liquids, while the lower drum collects the liquid. Some of the solids flow into the lower drum below the first stage, but most of the solids collect on the elements and on the bottom of the upper barrel of the first stage. Likewise new is a humidifier for FC vehicles and the H70-08-HRS hoses for H2 applications.


Fig. 8: At an interactive table, visitors can take a look inside an electrolyzer receptacle and search for Parker components in it
Source: Parker Hannifin, Parker Hannifin, Halle 13, Stand C55

Fischer Fuel Cell Compressor from Switzerland manufactures air compressors for fuel cell systems. Their special storage technology should then enable high performance and efficiency even when the fuel cell system is operating at high altitudes. Therefore, in addition to the classic FC applications in vehicles, trains, ships or stationary units, the compressors also have a place in aviation. The devices are not only in test mode, but are also in flight operation for several hours at a time. The company has also expanded its annual production capacity to 5,000 units.


Fig. 9: Compressors from Fischer are also suitable for aviation,
Source: Fischer Fuel Cell Compressor
Fischer Fuel Cell Compressor, Halle 13, Stand E46

Also the Danish specialist for FC compressors Rotrex is presenting a new air compressor. The EK40CT-2429 has an additional turbine/expander unit. This new compressor should be suitable for stationary, maritime and aerial applications with large fuel cell stacks with up to 400‑kW output power.


Fig. 10: The new fuel cell compressor from Rotrex,
Source: Rotrex, Rotrex, Halle 13, Stand C15

The Swiss company Celeroton Fuel Cell is developing and producing ultrahigh-speed turbo compressors and drive systems for fuel cell applications. All FC compressors from Celeroton are equipped with their own developed gas bearings that should enable high efficiency, oil-free operation and a long service life. With the CTi-1100, the company presents the second generation of the turbo compressor with integrated inverter for intralogistics, range extenders, stationary systems and drones. Likewise new is the CTi-2001 with integrated 80‑V inverter, conceived for intralogistics and off-road applications.

In addition, Celeroton Fuel Cell is expanding its product palette for applications with high power ranges. The new turbo compressor CTE-4000 in conjunction with the inverter CC-4000 should provide the air supply for fuel cells with a net output of 100 to 200 kW. The new system will be equipped with an optional turbine expander and several aerodynamic variants.


Fig. 11: Turbo compressor with 100 to 200 kW net output,
Source: Celeroton Fuel Cell, Celeroton, Halle 13, Stand D49

PDC Machines from the USA produces membrane compression systems and hydrogen compressors. Via the new online portal MyPDCMachines.com, customers can manage a digital operation twin of their installed PDC system. The portal offers access to important information, like the device status, recommended maintenance schedules, operation reports, service history, handbooks and data sheets. In addition, it enables the ordering of replacement parts. New is also a “PDC Toolbox,” which should help customers in the service or maintenance of PDC compressors.


Fig. 12: Access by QR code to the online portal MyPDCMachines,
Source: PDC Machines, PDC Machines, Halle 13, Stand E50/2

The gas analysis specialist Archigas from Rüsselsheim is presenting a novel measuring technology for humidity-independent H2 detection. For it, the company, in cooperation with the university Hochschule Rhein-Main, newly implemented the thermal conductivity measurement principle and combined it with semiconductor technology. With under 30 milliseconds, the new sensor from Archigas should exhibit an especially high reaction speed. If condensation comes in contact with the sensors for gas analysis, this usually leads to their immediate destruction. As a consequence, water can appear in the various places of the H2 process chain, security gaps can result and high costs can accrue. The special construction of the measuring module should therefore effectively combat a contact of condensate with the sensory units.


Fig. 13: As hydrogen is highly reactive, a detection over the whole process chain should be followed in real time
Source: Archigas, Archigas, Halle 13, Stand C16

Hydrogen refueling pumps

This year, Maximator Hydrogen is introducing its newest generation of hydrogen refueling pumps. The Max Dispenser 1.5 has a multimedia display with touch function, microphone, loudspeaker and NFC reader for direct payment. This enables users to receive precise refueling instructions and see the filling status of their vehicle. At the same time, the display serves as an interface to 24/7 support, which is always available to answer users’ questions.

Thanks to the built-in tilt detection, the dispenser is set to a safe state in dangerous situations, like for example impact with a vehicle. The H2 inflow is stopped, the relief valve is opened and the dispenser is de-energized. The dispenser can fill cars and heavy-duty vehicles with 700 bar or 350 bar.


Fig. 14: Thanks to the built-in tilt detection, the dispenser is set to a safe state in hazardous situations
Source: Maximator Hydrogen, Maximator Hydrogen, Halle 13, Stand C26

Also Linde is introducing a new hydrogen refueling pump at the Hydrogen + Fuel Cells Europe. The HyQ-Dispenser should offer high performance in H2 refueling. It is also said to be energy-efficient, very quiet and optimized for maintenance work.


Fig. 15: Card payment at the new Linde hydrogen refueling pump,
Source: Linde, Linde, Halle 13, Stand D55/1

Components for hydrogen refueling pumps

Norgren under its brand Buschjost now offers H2 high-pressure solenoid valves with FM-approved coils for the North American market. The company can now serve customers who are building hydrogen refueling stations or hydrogen storage facilities for Korea, China, Europe or the USA. The valves are designed for a pressure of up to 1,050 bar.

New are also oxygen solenoid valves and regulators that the company has developed specifically in accordance with industrial gas standards for electrolysis applications. In addition, the company offers electric high-pressure proportional regulators for hydrogen refueling pumps.


Fig. 16: High-pressure solenoid valve with FM-approved coils for the North American market
Source: Norgren, Norgren, Halle 13, Stand E13

Also Eugen Seitz from Switzerland is coming to Hannover with a new solenoid high-pressure valve for hydrogen applications. The valve has an integrated position indicator, which should ensure optimum system status information.


Fig. 17: The new H2 solenoid high-pressure valve with position indicator,
Source: SeitzValve, Eugen Seitz, Halle 13, Stand D50

Bürkert is putting in focus with its trade fair appearance the new coil technology “Kick and Drop.” This technology is said to achieve energy savings of up to 80 percent in valves, 45 K less self-heating and 200 percent more switching pressure compared to conventional coils. The Kick-and-Drop coil is equipped with a double winding of an inrush and holding winding. In Kick-and-Drop electronics, the coil is excited by a high electric impulse. This generates the required inrush power that the valve needs to open. After around 500 milliseconds, the Kick-and-Drop electronics switch to an energy-saving holding mode. With this, the power consumption is drastically reduced.


Fig. 18: Kick-and-Drop coil from Bürkert,
Source: Bürkert, Bürkert, Halle 13, Stand C30

Research

The German aerospace center for technical thermodynamics (DLR-Institut für Technische Thermodynamik) will be represented at the Hydrogen + Fuel Cells Europe with its departments for energy system integration and electrochemical energy technology. The institute develops electrochemical reactors based on proton ceramics. Proton ceramic fuel cells are operated at temperatures between 400 and 600 °C. The electrode configuration separates the vapor supply from the hydrogen production and thus prevents a dilution of the two streams. These novel cells are versatile: They can supply electrochemically compressed hydrogen, they can enable the protonation of molecules such as CO or CO2 into valuable raw materials, and they can additionally be used as conventional fuel cells for energy supply.

In the PtX-Wind partial project of H2Mare, the DLR is researching the offshore production of green hydrogen and power-to-X products. At the trade fair, the research institute is also introducing the transportable platform XPlore. This serves to investigate various electrolysis technologies in combination with different synthesis technologies.


Fig. 19: The transportable platform XPlore serves for offshore tests,
Source: DLR (based on CAD from TUB-EBMS)
DLR, Halle 13, Stand B36

The ZBT in Duisburg (Zentrum für BrennstoffzellenTechnik) is putting its focus on electrolysis and hydrogen derivatives at this year’s trade fair. The research institute is showing a model of an ammonia cracking reactor that was produced using 3D metal printing. A to-scale model of the associated cracker system for mobile applications will also be on display. The system was designed for a sailing yacht and now installed as part of a complete ammonia ship propulsion system in the sports yacht Ammonia Sherpa.


Fig. 20: Ammonia cracker system for use on a sailing yacht,
Source: ZBT

The electrolysis division of the ZBT is presenting new precious metal-free membrane electrode units and introducing methods for the quality control of PEM electrolyzers. In the field of material qualification, the ZBT is demonstrating methods for the characterization and detection of damage phenomena on fuel cell components such as membrane electrode units or coatings on bipolar plates.
ZBT, Halle 13, Stand E40

Fraunhofer ISE is presenting a laboratory AEM electrolysis cell in Hannover. This is a further development of the PEM electrolysis cell design and will be used for the precise characterization and qualification of various components such as membranes, porous transport layers and catalysts. This happens at pressures of up to around 10 bar, increased current densities of over 5 A/cm² and under precise temperature control by an integrated heater. The institute also offers customers measurement services for PEM and AEM electrolyzers and an analysis of the measurement results, to identify opportunities to improve customer products.

A new design of membrane electrode assemblies (MEAs) for electrolysis and mobile fuel cells, manufactured using screen printing or slot die processes with commercially available materials, is also part of the trade fair presentation.


Fig. 21: New design of the MEA for electrolysis and mobile fuel cells,
Source: Fraunhofer ISE
Fraunhofer ISE, Halle 13, Stand C41

At this year’s Hannover Messe, Fraunhofer IMM is introducing, at the Fraunhofer joint stand (Fraunhofer-Gemeinschafsstand), a compact system for ammonia splitting. This can be used for the decentralized supply of hydrogen, for example for hydrogen refueling stations. In maritime applications, such a system can supply fuel cells with hydrogen or supply ignitable “split gas” for ship engines.

The theme at the special exhibition area (Sonderausstellungsfläche) of the Hydrogen + Fuel Cells Europe is power-to-gas processes such as methanation in compact, microstructured reactors. In addition, Fraunhofer IMM is introducing reformer systems with which hydrogen carriers, like methanol, ethanol and synthetic hydrocarbons, can be used for hydrogen-based stationary and mobile energy supply. For these reformer systems, the institute is developing catalysts and catalytic coatings for microstructures.


Fig. 22: The ammonia and methanol-based systems for stationary and decentralized energy supply can be seen in Hall 2, Stand B24
Source: Fraunhofer IMM, Fraunhofer-Gemeinschafsstand, Halle 2, Stand B24, Fraunhofer IMM, Halle 13, Stand C47/1, Sonderausstellungsfläche

Machine building

The special machine manufacturer Graebener Maschinentechnik is presenting a press for the production of alkaline electrolyzer stacks. The pre-assembled stack consisting of bipolar plates is first inserted into the machine. There, it is compressed to a defined height until a certain pressure is reached within the stack. This pressure must then be maintained unchanged for several hours. During this time, the stack can be subjected to all the necessary technical tests with the help of other procedures.

The stack press for electrolyzers has a force of 800 metric tons and can accommodate stacks with a maximum height of around 3 m, a maximum diameter of 1.60 m and a weight of up to 12 tonnes. In order to be able to guarantee assembly work with maximum safety during operation, a hydraulic drive was deliberately dispensed with. Instead, the stack is compressed inside the press using six servomotor-driven spindle units. These are operated in synchronization mode and should therefore enable particularly homogeneous compression of the stack.


Fig. 23: The new stack press for electrolyzers,
Source: Graebener Maschinentechnik, Graebener Maschinentechnik, Halle 13, Stand E42

The laser welding specialist AWL-Techniek Holding from the Netherlands develops laser welding equipment and complete production lines for bipolar plates. According to the manufacturer, the new laser micro-welding cell can achieve a focus of 0.052 mm and therefore weld at high speed. This enables the sophisticated welding of the wafer-thin bipolar plates.


Fig. 24: In the Experience Center, AWL has set up a test facility that also enables automated quality control of the bipolar plates
Source: AWL, AWL-Techniek, Halle 13, Stand F49

The Belgian company Borit specializes in forming, cutting, welding and sealing technologies required for the production of metal bipolar plates for fuel cells and interconnects for electrolyzers. The trend with bipolar plates, according to Borit, is ever thinner materials on the order of 50 to 100 micrometers, in order to save weight. Borit develops the right technologies for such materials.


Fig. 25: Bipolar plates from Borit,
Source: Borit, Borit, Halle 13, Stand C19

Maceas, a 100-percent subsidiary of Worthmann Maschinenbau, focuses on helium leak testing in vacuum and under atmosphere as well as ultrasound gas bubble detection in water bath. The company is active in the areas of hydrogen, electrolysis, fuel cells and battery components as well as heat storage technology. In Hannover, the company is showing a new fully automated helium vacuum tightness testing system for metallic and graphitic bipolar plates.


Fig. 26: New system from Maceas for leak testing of bipolar plates,
Source: Maceas GmbH, Maceas, Halle 13, Stand E53/1

Catalysts and membranes

Pajarito Powder has built a new production facility for catalysts in fuel cell and electrolyzer stacks at its headquarters in Albuquerque, New Mexico, USA. The company uses platinum-group metals in its catalysts to achieve high performance and good stability and durability. With the new production facility, Pajarito Powder has tripled the production volume for FC catalyst material and doubled its in-house production of catalysts for the generation of green hydrogen.


Fig. 27: New production plant for significantly higher capacity,
Source: Pajarito Powder, Pajarito Powder, Halle 13, Stand A40

The Chinese manufacturer Anhui Contango New Energy Technology is showing in Hannover a large-format catalyst-coated membrane (CCM) on various PEM variants. The CCM should have a high current density and a low iridium and platinum content. Contango supplied around 20 MW of CCMs to large Chinese water electrolyzers last year. According to the provider, the product is also interesting for European customers.

Anhui Contango New Energy Technology, Halle 13, Stand A21

Carbon Energy Technology from China produces composite membranes. The company’s new product consists of an organic polymer, ceramic powder and a carrier material. The membranes are available in thicknesses of 200 and 500 µm. They are used for the alkaline electrolysis of water, as they can efficiently separate hydrogen and oxygen and allow the electrolyte to pass through.

Carbon Energy, Halle 13, Stand A42

System integrators, operators and consultants

H2Apex with headquarters in Rostock/Laage is based on three pillars: The company is active as a system integrator for turnkey hydrogen projects and mobility solutions. In addition, the company produces green hydrogen. The third pillar is the development and production of compressed gas storage systems for the temporary storage of hydrogen.


Fig. 28: Container with H2 compressed gas storage tanks,
Source: H2Apex, H2Apex, Halle 13, Stand E49

 The hydrogen core grid should be in operation by 2032. For this, natural gas pipelines are to be converted to hydrogen and new hydrogen pipelines are also to appear. German natural gas grid operator Ontras is contributing its starting grid H2-Startnetz to the project. Among other things, it consists of the two IPCEI projects “Green Octopus Mitteldeutschland” and “Doing hydrogen.” With it, Ontras wants to lay the foundation for efficient and safe hydrogen transport in its grid area. The eastern German company is connecting via its infrastructure the whole German with the European network – the European Hydrogen Backbone. Via this, hydrogen produced in Scandinavia is to make its way to Germany.


Fig. 29: The Ontras H2-Startnetz consists of the projects “Green Octopus Mitteldeutschland” and “Doing hydrogen”
Source: Ontras, Ontras, Halle 13, Stand D10

Siemens has expertise in the entire H2 value chain. The company makes this expertise available to OEM manufacturers, general contractors and plant operators as well as governments and municipalities in the implementation of hydrogen projects. This starts with financing and continues with the concept design and construction through to the operation of hydrogen generation plants and PtX projects. Siemens sees its strengths in the areas of digitalization, automation and electrification.

Siemens, Halle 13, Stand C36

The consulting firm PGUB Management Consultants is being represented in Hannover at the joint stand Hzwo-Gemeinschaftsstand Sachsen. PGUB advises the Swedish fuel cell manufacturer FCT Sweden. Under the name Protonik GmbH, starting April, an independent hydrogen consulting company is to be active. This is likewise to be found at the Gemeinschaftsstand Sachsen and also at the stand for the energy agency of the state of Hessen (hessische Landesenergieagentur, LEA).

PGUB, Halle 13, Stand B46 (HZwo) and C16 (LEA)

Author: Dr. Jens Peter Meyer

Search for the ideal hydrogen storage

Search for the ideal hydrogen storage

Interview with Thomas Korn, CEO of water stuff & sun

Startup company water stuff & sun has developed a novel technology that is designed to provide a safe and easy way to store hydrogen. The solution’s key component is its microvalve system. A pressure regulator controls the release of hydrogen progressively from 1,000 bar down to just a few bar. H2-international spoke to Thomas Korn, CEO of water stuff & sun, about how it works and the challenges encountered.

H2-international: Mr. Korn, the storage and refueling of hydrogen is a challenging issue. How do you solve that problem?

Korn: As it stands, the storage of hydrogen in conventional compressed gas tanks is complex and expensive. There is a trade-off between performance, safety and cost. We have a surprising solution to this: Instead of using a small number of large cylindrical tanks, our technology allows us to store the same amount of hydrogen in multiple spherical carbon-fiber vessels the size of a tennis ball. The silicon microvalve system, which is built into every pressurized ball, means that all the vessels act identically and in unison, just like a large tank. The expense involved in ensuring the safety of hydrogen stores can be significantly reduced if the energy is split into multiple small vessels. As a result, we save almost half the carbon fiber material compared with a standard pressurized tank. We call these ball-shaped high-pressure storage vessels Sfeers.

Advertisements

They allow hydrogen cells to be scaled as required and integrated into hydrogen batteries of any shape. Green hydrogen can thus be used in a variety of motive and stationary applications such as trucks, drones and airplanes. The next generation of these energy stores will be 95 percent lighter and up to 30 times cheaper than lithium ion batteries – while still carrying the same amount of energy.


Fig. 2:
Doing the rounds: a Sfeer ball at the EES trade fair in Munich

How does the hydrogen battery work?

Hydrogen batteries are low-pressure hydrogen tanks containing Sfeers which are filled at up to 1,000 bar. The hydrogen battery enclosures are designed for low pressures and can therefore be perfectly adapted to the available installation spaces in a wide array of mobility products. When hydrogen is extracted, the pressure in the hydrogen battery enclosure decreases and activates the microvalve system in all the Sfeers once the pressure drops below a mechanically programmed ambient pressure range. These then release hydrogen, together providing the energy required for a hydrogen engine or a fuel cell.

The pressure in the hydrogen battery rises again above the pressure activation level that is set during the manufacture of the micromechanical components. Once the pressure level has been reached, all the microvalves close. The pressure in the battery stays constant or reduces further if the consumer withdraws more hydrogen. The activation pressure is set to the supply pressure of the consumers. The hydrogen battery can be thought of as a low-pressure tank, but with the capacity of a high-pressure tank.

The concept increases the safety level while at the same time reducing the amount of material used. Since their highly adaptable shape means they can make best possible use of the available space, hydrogen batteries outperform conventional pressurized tanks in terms of volumetric and gravimetric power density.

Microvalve technology has its origins in satellite technology. How is this technology produced?

Satellites have a gas propulsion system that secures their position within the communication window. Even in the early days, industrial developers started to use microsystem technology to regulate gases due to financial pressure to make ever smaller and lighter satellites. Our innovation centers on the development of micromechanical switching elements that don’t need electrical energy for their control; instead they are controlled passively by the ambient pressure. As in semiconductor engineering, highly industrialized manufacturing processes are used that can create thousands of identical parts on large silicon wafers. Valves, gas channels and the five-stage pressure regulator are produced and joined in four silicon layers. All chip components are built into a space measuring 4 x 4 x 2.5 millimeters (0.16 x 0.16 x 0.1 inches).

How did you come up with the idea of spherical high-pressure vessels?

The technology was invented by Prof. Lars Stenmark, who taught microsystem engineering in the Ångström Laboratory at Uppsala University and who had already applied earlier inventions to the aerospace industry. When he told me about his hydrogen storage invention, I was all for it. A physical hydrogen storage vessel that combines two existing technologies and resolves the trade-off between safety, cost and performance in hydrogen tanks – we couldn’t resist and founded the company water stuff & sun in January 2017.


Fig. 3:
A view of the lab shows the test setup for microchip evaluation

Is there already a prototype?

We have already produced and tested prototypes of switching valves and the key element of the valve system – the pressure regulator – in the clean room of the Ångström lab in Uppsala. We have also put a carbon fiber Sfeer prototype through a burst test and validated our simulation model with the results. At the moment we are building the first system prototype of a hydrogen battery with three Sfeer cells. The prototype and its use in a micromobility application will reach technology readiness level 5 in the first half of 2024. At that point we’ll start to develop hydrogen batteries for specific mobility products with several manufacturers and go on to industrialize them in the next stage. There is a great deal of interest from industry. For example, we have already submitted a joint funding project with an aircraft manufacturer and the German Aerospace Center. We are working with our partner Keyou to develop hydrogen batteries for converting and retrofitting trucks and buses. Additionally, we’ve managed to stimulate interest from a mining machinery manufacturer and a truck OEM.

Returning to the refueling process: Am I right that you are intending to swap the tanks?

Hydrogen batteries don’t need to be refueled in the vehicle; they are exchanged at swap stations or, in the case of small applications, they can also be exchanged by hand. That way, refueling can take place quickly and cost-effectively. The empty hydrogen batteries are refilled at central compressor stations and returned to the swap stations. The low operating pressure and the limited quantity of H2 in the hydrogen battery enclosure makes this ease of handling possible. In comparison with conventional high-pressure or liquid hydrogen refueling stations, the expense and complexity are significantly reduced, which in turn lowers the capital and operating costs and thereby also the hydrogen price. For heavy-duty vehicles, for instance, with hydrogen, several hundred liters of fuel energy equivalent need to be compressed, cooled and transferred. By simply swapping the hydrogen battery, the process can be completed in just a few minutes.

The financing required will be considerable. What are the next steps for your company?

The need for capital in a tech startup is always an issue – it’s a continuous process. We have just started a new financing round in which our existing investment partners, such as the investment arm of Kreissparkasse Esslingen-Nürtingen, or ES Kapital for short, the company Besto, run by the entrepreneurial Beyer and Stoll families, and machinery and tooling factory Nagel, have already registered an interest. I would refer to them as relatively down-to-earth, regional investors that have been involved from an early stage. The plan is to invest the new cash in the development of a prototype in the motive application area, as mentioned earlier, among other things. The raw materials for the production of semiconductor chips are all affordable. Carbon fiber and silicon are readily available on the market. That is an advantage in terms of further scaling. If everything goes according to plan, we will see the first of our batteries in a vehicle or aircraft by 2025.


Fig. 4:
The H2 battery should be quick and easy to swap in and out of a truck

When and how will the market for your solution evolve?

The transformation of energy systems is well under way. Infrastructure for natural gas- and oil-based fuels is being replaced by hydrogen and liquid hydrogen derivatives such as ammonia, methanol or synthetic fuels. The competition for technology leadership and, ultimately, energy leadership began long ago. In China and the USA, many billions of euros are now being invested in hydrogen technologies and their infrastructure; we Europeans are attempting to counter this with the Green Deal. Hydrogen projects are sprouting up all over the place. As far as we are concerned, the market has already started; we’re currently concluding cooperation agreements with initial vehicle and machinery manufacturers.

Where will the first market be that manages to develop?

We need to take a multitrack approach and are therefore also looking at the USA and the Arab world. The country that achieves the lowest hydrogen prices by investing will attract a lot of companies and investment. In the EU and Germany I hope that the greenhouse gas quota gives us an instrument that is competitive.

You won a prize at the World CleanTech StartUPs Awards, otherwise known as WCSA 2023. What particularly impressed the judges?

Firstly, the award as a platform is a very interesting network in itself. Applications for WCSA 2023 were invited by ACWA Power in strategic partnership with Dii Desert Energy and the French institute for solar energy CEA-INES, among others. The judging panel recognized the transformative potential of the hydrogen battery. The innovation could create an efficient and flexible infrastructure for H2. The electricity costs for hydrogen production from renewables are very low in Dubai. That’s why ACWA invited us again at the end of 2023 to present our solution locally. That will be extremely exciting.

In November we received two awards at the Global EnergyTech Awards: the prize for the Best CleanTech Solution for Energy and a special prize for Best Stand Out Performer. We were the only winners from Germany. That helps.

Interviewer: Niels Hendrik Petersen


Fig. 5:
Thomas Korn

Thomas Korn has been working in the hydrogen field since 1998. The engineer’s experience includes work at BMW on fuel cell development. In 2015, he co-founded the hydrogen startup Keyou in Munich. The startup water stuff & sun was launched in 2017 in Unterschleißheim, Bavaria. The fledgling company now has 15 members of staff and a branch in Uppsala, Sweden.

Is exponential growth slowing down?

Is exponential growth slowing down?

Fuel Cell Industry Review 2022

Year 2022 saw fuel cell shipments creep up over 2021 numbers, though the latter was a remarkable year. When 2021 exceeded 2020’s MW numbers by over 70%, we thought we were finally seeing the uptick that had been anticipated – the classic “hockey stick” pattern. But the structure of the industry – and its reliance on only a few players for the majority of shipments – means that growth comes in spurts.

E4tech’s eighth annual Fuel Cell Industry Review showed just under 86,000 units shipped in 2021, or just over 2,300 MW, even with the COVID pandemic still hanging over markets. But this rapid growth was largely due to the activities of two vehicle OEMs, Hyundai and Toyota, together accounting for over 70% of the megawatts. But even after taking these out of the picture, growth continues – slowly but surely.

Advertisements

E4tech is now part of ERM and the team is continuing to research and write the Review. The ninth FCIR shows that 2022 shipments were similar to the year before – with the continued but slow growth still led by Hyundai and Toyota, at over 60% of MW shipments, and by fuel cell buses and trucks into China. In 2022, we estimate nearly 89,200 fuel cells to have been shipped, amounting to almost 2,500 MW.

Analysis by region

For vehicles (which by far is the largest contribution, at 85% of all shipments by megawatts), much of the demand was localized to China and South Korea. China saw over 4,150 units being shipped, across all modes of mobility (including forklifts, now slowly taking off in the country), while South Korea saw nearly 10,400 deployments, dominated by Hyundai’s Nexo. Together with 831 Toyota Mirais going into the home market of Japan, Asia now accounts for around 15,600 units into transportation markets, or 17% of global shipments of fuel cells by number, but rather more impressively some 1,500 MW (60%) of the shipped megawatt count.

Hyundai is benefitting from the 50% subsidy for fuel cell vehicles in South Korea. South Korea is now also the single largest market for large stationary units, in CHP and prime power modes. Stationary shipments into the country grew from 147 MW in 2021 to 196 MW in 2022 (8% of the global MW count). These numbers illustrate the importance of South Korea for fuel cell shipments – and, moreover, the key role of sustained policy and subsidies in helping fuel cell companies and OEMs to achieve volume.

In context of the Japan’s Ene-Farm program, across all markets (stationary, mobility and portable), Asia accounts for 60,850 units (two-thirds of global shipments) and 1,770 MW (71% of global shipments). Behind Asia is North America, with around 14,550 fuel cell shipments (nearly 485 MW, or 19% of global shipments in megawatts), led by Toyota and Bloom Energy shipments to the United States. Europe accounted for roughly 13,250 of fuel cell shipments in 2022, down from just over 14,000 units in 2021. The fall in unit shipments followed the completion of the PACE program of the US Inflation Reduction Act and the imminent closure of KfW-433 grant funding by Germany. In megawatts, the count slightly increased, from a corrected 204 MW in 2021 to 228 MW in 2022, about 9% of the global market. Fuel cell vehicle shipments to Europe are lower than for Asia and the US because of the low subsidies provided by the national governments.

Analysis by application

Fuel cells for mobility, primarily cars, continued to dominate the overall count. Across all modes of mobility (including forklifts), 85% of shipments (2,100 MW) fell into this category in 2022, 150 MW more than in 2021. In units, mobility accounted for 35% of shipments in 2022, a slight fall from 2021’s share. So, the message is transportation is growing, but other fuel cell markets are growing too.

The next main contributor to vehicle shipments is China, with a record 3,789 units (buses and trucks) being shipped over 2022. Together, these are estimated as contributing 387 MW to the overall count in 2022.

While nearly 1,000 fuel cell buses were shipped into China in 2022, fewer came to Europe in 2022 (only 99 registrations). According to CALSTART figures, as many as 82 new fuel cell buses were fielded in the US in 2022, mostly in California. Outside China, fuel cell truck shipments globally in 2022 remained minuscule. This could change, given the business plans of Cellcentric, Plastic Omnium, Hyzon and others.

Fuel cells for ships and for aviation remains exploratory, now with a growing emphasis on propulsion rather than hotel loads or auxiliary power. Forklifts continue to be a major application for fuel cells, albeit with fewer unit shipments in 2022 (over 9,650 units) compared to 2021 (over 13,400 units). Prime power and CHP comprise a large part of the remaining demand, in unit numbers and in MW. By number, micro-CHP still dominates, with Japan leading with its Ene-Farm program. ACE shows 42,877 units being installed in 2022, over 3,000 units more than the previous year. Outside Japan and Europe, micro-CHP shipped in negligible numbers, further demonstrating the criticality of country-to-country policy in supporting fuel cells. Together, prime power and CHP across the power range contributed 364 MW shipments in 2022, up from 335 MW in 2021. Although a growing emphasis for developers, fuel cells for grid support and off-grid power has remained subdued, at 14 MW (for both years). Shipments of portable fuel cells (including smaller ported APUs, less than 20 kW in power output) showed an increase, from just over 6,000 units in 2021 to nearly 8,000 units in 2022. These are supplied globally, but most feed into European and North American industrial and consumer markets.

Shipments by fuel cell type

PEM continues to outweigh other fuel cell types in shipments, both in volume and in MW capacity. Of the nearly 90,500 fuel cells shipped in 2022, over 55,000 were PEM. By megawatts, PEM fuel cells recorded 2,151 MW, 86% of the overall volume of shipments.

High-temperature PEM, generally utilizing methanol rather than hydrogen as a fuel, continues to grow, led by Advent Technologies. While still a fraction of overall PEM units at present, shipments are set to grow more aggressively given the improved logistics and increased runtimes enabled by the methanol fuel. DMFC (direct methanol) had a good year, with nearly 8,000 units shipped over 2022, mostly from SFC Energy.

SOFC (solid oxide) grew to nearly 27,000 units in 2022 (mostly micro-CHP, by number). The MW count grew from 207 MW in 2021 to 249 MW in 2022. Much of this is attributable to stronger sales from Bloom Energy. PAFC (phosphoric acid fuel cell) shipments fell, and while no new MCFC (molten carbonate) system placements were recorded over 2022, FuelCell Energy continues to produce significant volumes of stacks, for mid-life refurbishment of systems. AFC (alkaline) shipments increased to over 100 units in 2022, way down on other fuel cell types despite the lower cost potential, both for the fuel cell stack and the hydrogen purity requirement.

Summary

Fuel cells had a good year in 2022. Despite shipments being dominated by a few key suppliers into just a few countries, we are at last beginning to see shipments into Australia and South America, buoyed by the greater interest in hydrogen generally. And while interest is helpful, it remains the case that fuel cells have yet to break through the high capital cost threshold, and (for the hydrogen-fueled units) high fuel prices. We are slowly seeing this happen, through big changes to the supplier landscape, the IPCEI initiative in Europe, significant capacity upgrades to fuel cell production, and the Inflation Reduction Act in the US. But for now, the message remains the same: sustained support from governments is still needed to allow fuel cells to fully support the energy transition. Some fuel cell companies are now also purposing their designs to electrolysis, to help push the market, and with it the hockey stick.

ERM’s Review, a digest of the year’s activity, together with an analysis of fuel cell shipments by region, type and application year on year, is available at http://FuelCellIndustryReview.com. The 2022 edition is delayed, but coming soon. We would like to thank all the fuel cell shippers who graciously provide shipment numbers to us each year, which helps underpin our review.

Author: Stuart Jones, ERM, London, UK, Stuart.Jones@erm.com

We can master a scale-up for green hydrogen

We can master a scale-up for green hydrogen

Interview with Dr. Kai Fischer, Director at RWTH Aachen

The efficient scaling of green hydrogen production technologies is an essential step in making hydrogen an economically sound part of the energy transition. With regard to this necessary and massive capacity expansion, the plastics industry has a lot to offer as far as the hydrogen industry is concerned, because plastics are high-performance materials whose property profile can be engineered very precisely for the intended application. Additionally, the processing technologies in the plastics industry allow high-tech components to be produced efficiently and in large numbers. Dr. Kai Fischer, scientific director at the IKV and responsible for the topic hydrogen economy, explains in this H2-international interview why the exchange between the two industries is so important, what significance plastics have for the scaling of hydrogen technologies, and how the cooperation between the participating industry partners is to be continued in the “Hydrogen Business and Technology Forum”.

Advertisements

H2-international: Following the hydrogen study produced in the past two years, there now is the “Hydrogen Business and Technology Forum” to intensify the exchange between the hydrogen industry and the plastics industry. Why is that now important?

Fischer: Hydrogen is intended to become the backbone of the energy turnaround. Today, approx. 96 % is obtained from fossil resources such as natural gas and coal. Only 4 % is produced by electrolysis. For this – as some people may remember from school – water is broken down into hydrogen and oxygen using electricity. Electrolysis is the way to produce “green”, i.e. climate-neutral, hydrogen. And even for this 4 % electrolysis, only a small proportion of renewable energy is currently being deployed. Consequently, only a very, very small part of the production capacity is at present suitable for producing green hydrogen. Yet all today’s projections are aimed at producing green hydrogen. It is indeed important to see that a great deal needs to be done here with completely new development work. Large numbers of electrolysers and the corresponding infrastructure have to be put in place. That again means working with large numbers, and large numbers are always predestined for plastics. For this reason, we believe that plastics are the enablers to make hydrogen production economically scalable.

And that is why you believe the plastics industry must get together with the hydrogen industry to exchange information and ideas?

Exactly. The people in the hydrogen industry are familiar with all the requirements of the process engineering plants, the media, the temperatures, the pressures etc. But, of course, they think not in plastic but in metal. It is not the case that the construction can simply be switched from metal to plastic. That would not bring any advantages. In order to find new solutions for the requirements of systems, it is necessary to go beyond substituting single metal components with single plastic components, and to look at functional integration. Precisely for this, this application know-how must be communicated so that the plastic value chain can say how solutions would ideally look in plastics.

Are there already examples in the hydrogen industry?

Yes of course. As an example, let us look at the end plates of a fuel cell. Here, many media have to be conveyed, both gaseous and liquid. Connections also have to be integrated. If they are made of metal, it means that a very large number of individual components have to be mounted. In the meantime, there are some applications in which this is solved by a single large injection-moulded part in which all media lines, connections, electronics etc. are already integrated.

This means that the hydrogen industry is not yet aware of the possibilities offered by the plastics industry?

These are two completely different worlds. The facilities for producing or converting hydrogen are classic process engineering plants. They consist predominantly of stainless steel with stainless steel pipes. The producers of such plants are indeed only seldom aware of the possibilities offered by plastics. For this reason it is important to bring the hydrogen OEMs with their knowledge of the requirements together with the plastics specialists with their know-how and their technical capabilities. Only in this way can we start to think in terms of highly integrated products that can be automatically manufactured in very, very large numbers. This is an absolute necessity if the scale-up of green hydrogen technologies is to succeed within a reasonable time and at reasonable cost.

How did the idea of a network forum come about?

The idea of a network forum came because, in 2021, we at IKV launched a market and technology study in cooperation with more than 20 companies in order to deal with this issue holistically. The study is, however, only really the basic package. Our aim was always to operate a continuous exchange to identify how plastics can help in establishing hydrogen. For this, we need continuity, and we have now implemented this in the form of this forum, which will meet regularly twice a year. These meetings will be supplemented by continuous technology monitoring. At the kick-off meeting, we also decided that there would be individual workshops on special topics between the meetings.

What were your impressions of the kick-off meeting and what did you think of the content?

It was a great event! We had a total of 50 participants in the room and four keynote presentations that were divided in equal parts between users of hydrogen systems and solution providers from the plastics value chain. We had very open and transparent discussions. In the breaks, the business cards were flying around and everyone was networking on a grand scale. As part of the event, we also charted the course for defining, according to the requirements, the elements of further cooperation for these two target groups.

As far as the content was concerned, I felt that a very lively demand exists for understanding the systems in the various segments – especially on the part of the plastics industry. I also felt that there are many companies who, irrespective of the competition in their hydrogen systems, are prepared to talk about the challenges because they hope for the push of the open-innovation approach – in other words the push from the supplier industry – and want to create competitive advantages through this in future.

Another aspect that I took from the meeting is that the companies in the plastics value chain, some of which are competing with each other, are very open to cooperation. For example, we discussed the fact that we would sound out in the consortium which testing and characterisation processes are available in which companies so that the companies can supplement each other. In this way, it will also be possible to identify supplementary demands and derive measures to realise them. It was truly noticeable that everyone is keen on baking this large pie together instead of generating competition and trying to grab the biggest slice of a small pie. This seemed to me to reflect the spirit of the meeting generally.

As you said at the beginning, the market and technology study forms the basis for this network. What are the most important things you have taken from this?

The hydrogen industry is still driven very much by traditional process engineering plants. An important finding is, however that we do not have to revolutionise the plastics industry in order to offer solutions to the hydrogen industry. Plastics can be compatible and there are numerous applications and good examples for the implementation of highly integrated and function-integrated components. This means that if the scale-up is necessary and the number of pieces must increase, the plastics industry can offer these solutions without reinventing the world. It is possible to transfer a lot from other industries, but it is naturally not necessary to be familiar with the specific applications in order to be able to suggest suitable solutions for the hydrogen industry. The good news is that we do not now have ten years of development ahead of us and the plastics industry must not fundamentally change or develop completely new products. For each industry it can take what is already there in order to further develop it and transfer it.

What happens now?

Our Forum member Freudenberg held theme workshop in August in addition to our half-yearly meetings to discuss the questions that the Forum participants had addressed fairly openly at the kick-off. The idea for specific workshops was born during the kick-off because the participants deisred an exchange on how to bring plastics expertise specifically into the development of new systems. Furthermore, the team is now starting the Market & Technology Monitor in order to continuously observe the market. We have agreed that it should be more than simply collecting the available information. The information should be questioned, evaluated and categorised. We will look exactly how reliable it is and how realistic the implementation scenarios are. In this way we will draw up an organised list of information, that we will pass on at three-month intervals to the partners in the forum.

Is it still possible to join?

Yes, it is. We naturally want this network to grow, and are pleased to have both small and large companies from the plastics value chain and naturally companies from the hydrogen value chain. Through the synergies of both industries, we can master a scale-up for green hydrogen and make it economical.

Hydrogen Business and Technology Forum


Dr. Kai Fischer leads the „Hydrogen Business and Technology Forum“

With its “Hydrogen Business and Technology Forum”, the Institute for Plastics Processing (IKV) in Industry and Craft at RWTH Aachen University has established a close network between the hydrogen economy and the plastics industry, where it regularly fosters the connection of requirements and application know-how with material and production know-how.

The “Hydrogen Business and Technology Forum” emerged from a market and technology study on plastics in the hydrogen economy initiated by the IKV and completed in November 2022. About 20 industry partners were already involved in the study. With regular workshops and a continuous Market & Technology Monitoring, the work is now being continued in the “Hydrogen Business and Technology Forum”. The kick-off for the Forum was 16 May 2023. The first thematic workshop dealt with “Testing and Analysis of Plastics in Hydrogen Applications” and took place on 9 August 2023 and was hosted by the Forum member Freudenberg. On 19 October 2023 Forum members met again at the IKV for its second regular Workshop. The Forum is still open to new members. Information at H2@ikv.rwth-aachen.de