Contact

Power-to-Gas for Homeowners

By

March 2, 2017

Image titel:

Sources:

Power-to-Gas for Homeowners

Exytron

Demonstration system with switchboard, © Exytron

Reusing carbon dioxide over and again in a closed process would be an optimal solution for protecting our environment. A demonstration system doing exactly what is needed has been running in one of Exytron’s showrooms at Rostock Port since September 2015. About 50 meters or 164 feet away from the wharf at the Unterwarnow, the river flowing through the old part of this Hanseatic city, you will find the headquarters of a young business that won the Start-up GreenTec Award at the end of April last year. But what was more important than the EUR 10,000 endowment which came with the prize was the attention Exytron received – for itself and the catalytic process it developed in-house, the patented SmartEnergyTechnology.

The first commercial power-to-gas system by Exytron is ready and waiting to be delivered to Alzey. The small city has a population of around 18,000 and is located 50 kilometers (31 miles) to the northwest of Mannheim, Germany. The building permit for the row house complex in the state of Rhineland-Palatinate had already been submitted in November 2015. Plans are to supply partially off-grid and almost emission-free energy to all in all 37 residential units. That was the clear-cut requirement set by the principal contractor, Deutsche Reihenhaus. The temporary delay is the result of an improper inspection of the former Deutsche Bahn premises, which will make an environmental site assessment necessary. In the meantime, the winter is causing another months-long postponement of civil engineering work. “Our energy supply system has been ready for delivery since 2016; we’re basically waiting for the go-ahead,” said Klaus Schirmer, sales and project manager of 2013-founded Exytron.

Advertisements

Based on current planning, the project is scheduled for completion in spring 2017. By then, the 37 residential units are thought to be supplied by eco-power as well as heat energy through a district heating grid. However, the focus of this pilot project has not been on economic feasibility. The main issue was CO2-neutral living. An Exytron simulation showed a 99.3 percent reduction in carbon dioxide emissions compared to similar residential developments. Almost emission-free living seems possible.

The heart of the supply system is its mechanical room, which has the size of around three-and-a-half car garages. It contains the electrolyzer, methane reformers, condensing boilers, CHP plant, hot water storage and central control unit. This room will supply the houses with electricity and with heat from a district heating system. Remote monitoring makes it possible to check whether everything is running smoothly.

Advertisements

The alkaline electrolyzer has a capacity of 40 kilowatts. It primarily uses power sourced from a PV system (125 kW). Additionally, eco-friendly electricity is bought off the grid, as the solar energy is not enough to provide heat and power to the entire residential complex. This makes the project partially grid-independent.

Designated a biogas system

“Right now, we are taking advantage of the regulations in place, which term our methanization system a biogas plant,” Schirmer said. Having their plant designated a biogas production facility means they benefit from cheaper grid power for electrolysis and methanization, as there will be no electricity tax or grid fees added. This reduces power prices to between 10 and 11 euro cents.

The system’s USP is its CO2-free output. The CHP part and the gas boiler have been modified to separate the environmentally harmful gas from the other exhaust fumes. Afterward, the captured carbon dioxide can be used to produce methane by using a catalyst. “The recovery is what differentiates this plant from common methanization systems. It’s the reason you can use the power-to-gas plant at any location, meaning decentralized, and provide businesses with heat directly at their facilities,” the project manager said.

Waste heat recovery improves system performance

In contrast to conventional power-to-gas processes, the focus is not on the production and storage of methane. The system that Exytron designed prioritizes heat transmission through methane synthesis, and most of the energy is used on-site. “It increases the system’s overall efficiency compared to centralized power-to-gas systems, which don’t use this heat or only a small part of it,” Schirmer said.

The process was developed in close collaboration with the Rostock-based Leibniz Institute for Catalysis, one of the biggest publicly funded organizations to research catalysis for industrial purposes in Europe. What’s special about this concept is the focus on thermal energy created through converting hydrogen into methane. The exothermic reaction produces the best results between 300 and 400 °C and the research team of Professor Matthias Beller has optimized the catalytic process to produce as much usable heat as possible – at least, enough to heat a building.

“We were successful in expanding the heat range. Catalysis is done in an environment in which we can make efficient use of the generated heat,” Andreas Martin summed up the research findings. The project participants tested a variety of catalysts, pipe sizes and carrier materials (see box). The aim was to use a “packed bed” to have heat released across the largest possible surface, i.e., to avoid heat being concentrated in a certain “hot spot” only.

How to get to 80 percent efficiency

The production output of hydrogen and synthetic natural gas fluctuates because the control unit provides different fuel quantities based on individual calculations of current and forecast demand. The system can create up to 10 Nm³ of hydrogen and 2.5 Nm³ of synthesis gas per hour.

Excess eco-power will first be used to split water into hydrogen and oxygen inside the electrolyzer. With the help of a catalyst specifically designed for this task by the Rostock-based Leibniz Institute, hydrogen will be directly converted into methane by adding CO2 (Sabatier reaction) stored in a natural gas tank. If required, the methane can be burned and the subsequently released CO2 fed again into the closed process and reused for methanization. The modified combustion process does not release any nitrous gases, which could harm the environment.

“Our plant has no steady system or utilization efficiency; both will fluctuate based on the mode of operation, consumption and energy sources,” Schirmer explained. Simulations show efficiency values ranging between 70 and 80 percent. They could still be improved by increasing the heat transfer from pumps and compressors, but that would not make much sense economically right now, he explained, as 80 percent efficiency was enough. In a decentralized system, the overall design of energy supply was more important than efficiency, he said.

There is still more R&D work to be done before intelligent controls can be used for the entire system, something that is still a novelty and technically challenging. It requires the consideration of many parameters (energy supply, storage and energy input). Differing consumption values, weather patterns and forecast figures play their part too. Exytron intends to learn from the pilot project in Alzey what it can to enhance the productivity and manageability of the system.

No added costs

This all will be of little concern to the users living in the residential units. They pay no extra charges, but – as per Schirmer – less than the cheapest price for electricity they can find on online portal Verivox. Heat is said to cost around EUR 1.30 per square meter and month. After all, power-to-gas systems for homeowners must remain economically feasible once subsidies run out. Schirmer knows that: “It is what we strive for.” He added that the technology’s possible scaling in quantity and size could already reveal a notable cost-cutting potential throughout the next projects.

“The system is technologically mature,” Schirmer said. “The biggest challenges domestically are the many regulations governing energy supply. Right now, we are primarily planning projects for larger residential units and apartment complexes or blocks.” In the German state of Bavaria, negotiations are taking place about building a power plant equipped with Exytron’s technology. Implementing the project would create the world’s biggest power-to-gas system.

Schirmer said that businesses from many industries had shown interest in the new technology: From lodgings to owners of single-family homes and multi-family buildings who want more grid independence and customers who have no or only limited access to the grid, such as in remote areas in Africa and Central Asia – or on certain islands, where power is still being produced by diesel generators. Even across Germany, there is still much untapped potential: As many as 19.3 percent of the around 40 million households use natural gas for heating.

The EUR 2.4 million project Chemical Energy Storage for Decentralized Supply was subsidized by the economy ministry of the German state of Mecklenburg-Vorpommern through the European Regional Development Fund.

Author: Niels Hendrik Petersen

Here are interesting and current articles on the topic of hydrogen – stocks and the stock market!

Economic prospects for companies in the hydrogen sector | Future, stocks & hydrogen companies on the stock exchange and more…

Which hydrogen companies will prevail in the competitive market in the long term? Get tips and cartwheels and learn more about risks or opportunities. Our stock market specialist and expert author Sven Jösting reports critically, independently and competently.

Mar 18 2024

Search for the ideal hydrogen storage

Interview with Thomas Korn, CEO of water stuff & sun Startup company water stuff & sun has...
Mar 15 2024

Is exponential growth slowing down?

Fuel Cell Industry Review 2022 Year 2022 saw fuel cell shipments creep up over 2021 numbers,...
Mar 11 2024

On the way to becoming a green hydrogen partner

Oman aims to score points with H2 infrastructure Wind, sun and loads of expertise – these...
Mar 07 2024

We can master a scale-up for green hydrogen

Interview with Dr. Kai Fischer, Director at RWTH Aachen The efficient scaling of green hydrogen...
Mar 07 2024

Frustration over continuing uncertainties

Interview with Jorgo Chatzimarkakis, CEO of Hydrogen Europe There is a lot that needs sorting out...
Mar 05 2024

“If ever there was momentum for hydrogen, it is now”

Interview with Dr. Jochen Köckler, chairman of Deutsche Messe “We’re bringing people together.”...
Feb 28 2024

H2Direkt: Blueprint for heating with pure H2

The energy providers Thüga und Energie Südbayern (ESB) as well as Energienetze Bayern have...
Feb 26 2024

Just switch over?

Hydrogen in the existing natural gas network Whether hydrogen contributes to the clean heating...
Feb 26 2024

Pilot plant for coating bipolar plates

At Fraunhofer FEP (Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und...
Feb 20 2024

55 MW electrolyzer to decarbonize Saarland

Hydrogen Regions series: HydroHub Fenne living lab The power plant site in Fenne, Völklingen, a...
Feb 20 2024

Chicken feathers as FC membrane material

Feathers from chickens or other poultry could in the future help make fuel cells more effective...
Feb 15 2024

SMEs demand more security

Guest article by André Steinau, CEO of GP Joule Hydrogen After all, the Ampel Coalition leading...
Feb 15 2024

Accelerated expansion of renewable energies

RED III is here – Elsewhere, the wait continues Progress is being made at EU level – albeit...
Feb 12 2024

Picea 2 relies on lithium instead of lead

HPS presents new product generation The company HPS Home Power Solutions has unveiled a new...
Feb 12 2024

H2 production by photocatalysis

The direct generation of hydrogen from sunlight has long been considered the most elegant solution...
Feb 05 2024

Regional instead of international

Hy-Fcell has it difficult asserting itself The aspiration of Landesmesse Stuttgart with Hy-Fcell...
Feb 01 2024

Hydrogeit Verlag turns 20 years old

Hydrogeit Verlag is proudly celebrating its 20th anniversary as a renowned specialist publisher in...
Jan 26 2024

Stracke other H2Now managing director

BMV Energy GmbH is entering the market as another player in hydrogen refueling stations. The...
Jan 26 2024

Starting points for a comprehensive hydrogen ramp-up

Industry congress GAT 2023 in Cologne To establish a functioning hydrogen economy, the entire...
Jan 26 2024

The industry highpoint in autumn

Hydrogen Technology Expo total success In autumn 2023 as well, the Hydrogen Technology Expo was...

0 Comments

Leave a Reply