Contact

Synlight: Concentrated Solar Power to Produce H2

By

November 2, 2017

Image titel:

Sources:

Synlight: Concentrated Solar Power to Produce H2

Synlight

Work at Synlight reactor, © DLR

Since spring, the sun has been shining in Jülich at the push of a button and 10,000 times brighter than normal. It is in this town in the German state of North Rhine-Westphalia that the German Aerospace Center, DLR, inaugurated its Synlight system comprised of 149 high-output lights that can simulate concentrated solar power. The system is intended to help the researchers create solar fuels independent of disruptive changes in weather patterns inside a three-story building specifically designed for this purpose. The overall objective is to develop solar units that can produce hydrogen or other fuels at maximum efficiency.

What has been installed in DLR’s new building was described by Bernhard Hoffschmidt, director of the Institute of Solar Research, as: “We’re bringing that star down to earth.” To do that, the institute set up a honeycomb-shape array of 150 xenon short-arc lamps as used in movie theaters, mounting them vertically on a tall support frame. But instead of them lighting up a motion picture, their mirrored reflectors of around one meter in diameter can be used to concentrate the rays on 20 by 20 centimeters (7.87 by 7.87 inches). This corresponds to a power concentration of around 10,000 kW/m², whereas the “original” can only provide sunlight at a maximum of 1 kW/m². Temperatures at the focal point can rise to more than 3,000 °C. Since the lamps can be controlled individually, they can be employed in as many as three different tests simultaneously, considerably shortening the time between new developments.

An alchemist’s dream

The high temperatures are intended to produce resources such as hydrogen in a sustainable way. Karsten Lemmer, executive board member at DLR, explained: “Solar-generated fuels offer great potential for long-term storage, the production of chemical base compounds and reductions in CO2 emissions.”

To create hydrogen, light is concentrated on a demonstration system containing a cerium oxide lattice. If steam is led into the reaction chamber, the oxygen it contains will combine with the metal at around 800 °C and will be absorbed by it, so that hydrogen is the only product left. Hoffschmidt said that the gas was “an alchemist’s dream,” as “this high-energy fuel can be used to create virtually anything.”

North Rhine-Westphalia

Johannes Remmel, North Rhine-Westphalia’s environment minister, stressed during the inauguration on March 23, 2017: “To meet renewable energy targets, we need to increase the use of mature products currently available to us. But the energy market won’t see a transformation if we don’t invest in innovative research, new technologies and global showcases such as Synlight.”

The state has supported the project with EUR 2.4 million; another EUR 1.1 million came from the economy ministry.

How to make solar H2 production more efficient

The most crucial advantage is a stable operation that cannot be guaranteed in a natural environment. “The light has been optimized to cover most of the sun’s spectrum,” Hoffschmidt explained. He also clarified that the lamps, whose combined output adds up to an impressive 1.5 megawatts, are only switched on for the short time it takes to conduct the relevant experiments.

Kai Wieghardt, who was greatly involved in overseeing the installation of the system, explained to H2-international: “Our calculation is 1.5 megawatts times 500 hours per year, once the system is in full use. …

e-journal

To Wieghardt, power consumption is a secondary concern. He’s already thinking further ahead: “The aim of our research activities is to advance renewable use on a global scale. Our focus is on the earth’s sun belt, whose rich solar resources are to provide value and prospects to the people living there. Based on our vision, we develop technologies and educate students and graduates. Synlight has been a unique tool for achieving these objectives and it will now be available to the global research community and industry.” He added: “Improving the output of only one 100-megawatt solar system at 7,500 full-load hours by 0.1 percent will recoup our yearly power consumption. But, of course, we want to accomplish more than that.”

By “more,” Wieghardt means improving PV and electrolysis efficiency in H2 production from, on average, around 20 percent and 80 percent, respectively. “We hope that we can get to market-ready industrial applications in around 10 years,” he said.

Kategorien: Germany

Here are interesting and current articles on the topic of hydrogen – stocks and the stock market!

Economic prospects for companies in the hydrogen sector | Future, stocks & hydrogen companies on the stock exchange and more…

Which hydrogen companies will prevail in the competitive market in the long term? Get tips and cartwheels and learn more about risks or opportunities. Our stock market specialist and expert author Sven Jösting reports critically, independently and competently.

Jan 20 2025

The SHIMMER project

European multi-gas network is launched In the EU project SHIMMER, the German institute for...
Jan 17 2025

HH2E files for insolvency

Big plans and professional marketing – HH2E’s appearance was downright impressive, but on...
Jan 17 2025

No doubts about the core network

Gas network operators continue to count on political support In October 2024, the German Federal...
Jan 17 2025

Proton Motor lays off employees

The German fuel cell manufacturer Proton Motor has announced the provisional end of its production...
Jan 15 2025

ZBT expands HyTechLab4NRW

Nordrhein-Westfalen is further expanding its capacities in the H2 research sector. In September...
Jan 15 2025

Enertrag opens office in Hamburg

To strengthen its “role in the global hydrogen economy,” Enertrag, a developer and producer of...
Jan 13 2025

Construction and conversion of the infrastructure for H2 distribution

"Hydrogen can come, the gas distribution network is ready" There is extensive demand for hydrogen...
Jan 13 2025

Only a few stocks are on the winning side

Share analysis by Jörg Weber, ECOreporter The great excitement surrounding hydrogen seems to be...
Jan 13 2025

Gigahub for electrolyzers is running

The MAN subsidiary Quest One, formerly H-Tec Systems, celebrated the opening of its “Gigahub” in...
Jan 07 2025

The days of PowerPoint are over

High-ranking visitors at the Brandenburg Hydrogen Day The Telegrafenberg in Potsdam is usually...
Jan 07 2025

Where is the European H2 industry heading?

Four days of energy policy cooperation in Brussels – The European Hydrogen Week took place for the...
Dec 13 2024

Sustainability in the Hydrogen Economy

Recycling as a Key Factor for Resource Efficiency The hydrogen economy as a crucial technology for...
Dec 13 2024

Electrochemical hydrogen separation

Patented process as a cost-effective alternative to electrolysis The course to success of Siqens...
Dec 12 2024

Promising production alternative

Atmospheric plasma coating of polymer bipolar plates In times of global sensitization to economic...
Dec 11 2024

Iron as a cheap catalyst material

New catalyst releases H2 from ammonia To facilitate and accelerate the recovery of hydrogen from...
Dec 10 2024

H2 distribution with a pan-European pipeline system

New DNV study analyzes production and export A new study by the consulting firm DNV investigates...
Dec 09 2024

Golden harvest without electrolysis

Hydrogen through photocatalysis The startup Yellow SiC from Berlin is working on an innovative...
Dec 03 2024

A revolution from Germany

HAZOP analysis with AI support In the year 1999, Christian Machens developed the world's first...
Dec 02 2024

The digital world of hydrogen

Data provides key to green hydrogen economy Green hydrogen is considered one of the key...
Dec 02 2024

High-speed micro-milling of very hard steels for bipolar plates

Insights into a rapidly developing technology Extremely high demands are placed on tools for...

1 Comment

  1. Arno A. Evers

    See you guys at the CSP Seville 2107 conference,
    in Spain. November21 to November 22. I will be there

    Reply

Trackbacks/Pingbacks

  1. Concentrated solar power can split hydrogen – CSPPLAZA - […] Source www.h2-international.com […]

Leave a Reply

Discover more from H2-international

Subscribe now to keep reading and get access to the full archive.

Continue reading