Contact

HyGlass – process heat for industrial applications

By

December 15, 2021

Image titel:

Sources:

HyGlass – process heat for industrial applications

glass production process, © GWI

© GWI

Hydrogen is currently being discussed as a decarbonisation option for many sectors, some of them very different, from the transport sector to process heat in industry. The publicly funded research project HyGlass is investigating how hydrogen and natural gas-hydrogen mixtures can be used to decarbonise the energy-intensive high-temperature processes in the glass industry.

Glass is a material that is indispensable in modern society and is used almost everywhere – as containers for food, drinks and vaccines, as windows in buildings and vehicles, as glass fibres in IT technology or even as insulation material. Production is energy-intensive and requires process temperatures of up to 1,650 °C to melt the glass. In further process steps, heat at different temperature levels is required to thermally homogenise the melt, shape the product and cool it down in a controlled manner.

The glass industry covers about 75 per cent of its energy needs with natural gas, which corresponds to about two per cent of German gas consumption. The production processes are highly optimised to be able to manufacture glass products with high quality and efficiency with low pollutant emissions. At the same time, however, the use of predominantly fossil energy sources also generates considerable greenhouse gas emissions.

Decarbonisation options for the glass industry

In view of the climate targets in Germany, Europe and worldwide, but also as a result of pressure from customers and society, the glass industry, like many basic industries, is also faced with the question of how it can decarbonise its energy-intensive manufacturing processes. Green electricity is an option, but for physical reasons alone, not all types of glass can be electrically melted. In addition, the size of electric melting tanks is technically limited. Therefore, the use of hydrogen is an interesting alternative.

Hydrogen is relevant for the glass industry, as well as for many other sectors of the thermo-processing industries, for another reason: The gas industry in Germany and Europe is planning to feed more hydrogen directly into the natural gas grid in the future, with up to 20 percent H2 by volume being discussed. This means that existing plants (more than 40 per cent of Germany’s natural gas consumption is currently accounted for by industry) will also come into contact with H2 concentrations. Considering the often sensitive industrial manufacturing processes with their high demands on product quality, efficiency and pollutant emissions, this can be a considerable challenge.

The combustion properties of hydrogen and natural gas differ significantly: For example, hydrogen has a considerably lower volumetric calorific value, but at the same time the resulting combustion temperatures are higher. This means that significantly higher volume flows are required to realise a given necessary energy input into the process. The flow and heat transfer in the furnace chamber will change accordingly, with possible effects on product quality and process efficiency.

At the same time, higher local temperature peaks, local overheating of components or also higher nitrogen oxide emissions (NOX) are to be expected as possible consequences. However, it is difficult to generalise how exactly these changes affect a specific industrial manufacturing process, as industrial firing processes are very heterogeneous and often highly specialised. Therefore, detailed investigations for different industrial processes are necessary to assess the impacts and to develop solutions.

HyGlass

For the glass industry, such investigations are the focus of the HyGlass research project. In this research project, funded by the state of North Rhine-Westphalia, the Gas- und Wärme-Institut Essen e.V. (GWI) and the Bundesverband der Glasindustrie e.V. (BV Glas) are jointly investigating the effects of higher H2 concentrations in natural gas, but also of pure hydrogen, on combustion processes in glass production. […]

… Read this article to the end in the latest H2-International

Authors:
Dr. Jörg Leicher, Bledar Islami, Anne Giese, Prof. Klaus Görner – all from Gas- und Wärme-Institut Essen e. V., Essen; Dr. Johann Overath – BV Glas – Bundesverband Glasindustrie e.V.

Here are interesting and current articles on the topic of hydrogen – stocks and the stock market!

Economic prospects for companies in the hydrogen sector | Future, stocks & hydrogen companies on the stock exchange and more…

Which hydrogen companies will prevail in the competitive market in the long term? Get tips and cartwheels and learn more about risks or opportunities. Our stock market specialist and expert author Sven Jösting reports critically, independently and competently.

Feb 19 2025

Biggest change in the history of the cement industry

Interview with Erkam Kocakerim, CEO of Limak Cement Global Together with Air Liquide, Limak Cement...
Feb 17 2025

From CO2 capture to LOHC technology

Interview with Bryan Glover, CTO of Honeywell After more than 50 years of experience with...
Feb 17 2025

Reliable operation of fuel cells

System solutions for hydrogen supply and water separation Fuel cell systems have much fewer...
Feb 17 2025

The cleaner, the more support

Interview with Michelle Lujan Grisham, Governor of the US state of New Mexico The US is investing...
Feb 17 2025

Hydrogen for racing cars

Formula Student relies on H2 In the summer of 2025, the first hydrogen vehicles will compete...
Feb 13 2025

Shortage of skilled workers in the hydrogen economy

Various training courses at different institutions For around five years, the number of employees...
Feb 13 2025

Changes on the horizon

What developments! We are living in turbulent times. Several transformative processes are...
Feb 13 2025

Maximizing MEA efficiency with minimal iridium

The problem with iridium dependency The push for more sustainable hydrogen generation has never...
Feb 05 2025

The hydrogen economy needs to develop at greater speed

UFI Hydrogen may not yet be particularly well known to many industry participants in Germany, but...
Feb 05 2025

Hydrogen terminal in Braunschweig

Green hydrogen for research A research environment along the H2 value chain is being created at...
Jan 31 2025

Hydrogen production directly on the high seas

H2Mare researches offshore technologies Offshore wind power stations generate significantly more...
Jan 30 2025

Material testing as a guarantee of safety

Upgrading the gas infrastructure For hydrogen to be able to be used as an important part of the...
Jan 20 2025

The SHIMMER project

European multi-gas network is launched In the EU project SHIMMER, the German institute for...
Jan 17 2025

HH2E files for insolvency

Big plans and professional marketing – HH2E’s appearance was downright impressive, but on...
Jan 17 2025

No doubts about the core network

Gas network operators continue to count on political support In October 2024, the German Federal...
Jan 17 2025

Proton Motor lays off employees

The German fuel cell manufacturer Proton Motor has announced the provisional end of its production...
Jan 15 2025

ZBT expands HyTechLab4NRW

Nordrhein-Westfalen is further expanding its capacities in the H2 research sector. In September...
Jan 15 2025

Enertrag opens office in Hamburg

To strengthen its “role in the global hydrogen economy,” Enertrag, a developer and producer of...
Jan 13 2025

Construction and conversion of the infrastructure for H2 distribution

"Hydrogen can come, the gas distribution network is ready" There is extensive demand for hydrogen...
Jan 13 2025

Only a few stocks are on the winning side

Share analysis by Jörg Weber, ECOreporter The great excitement surrounding hydrogen seems to be...

0 Comments

Leave a Reply

Discover more from H2-international

Subscribe now to keep reading and get access to the full archive.

Continue reading