Contact

Infrastructure for long-distance hydrogen trucks

By

September 6, 2023

Image titel:

Sources:

Infrastructure for long-distance hydrogen trucks

Current state of development and prospects

Electric transportation

Germany’s Climate Change Act of 2021 tasked the country’s transport sector with reducing carbon dioxide equivalent emissions by 85 million metric tons by 2030. The target means approximately halving emissions in 10 years. Around 35 percent of transport emissions originate from commercial vehicles, more than half of which is caused by long-distance transportation. Hydrogen is considered a promising fuel for bringing down carbon dioxide emissions from commercial vehicles used on long journeys. The following article summarizes selected content from a recent study on the state of development and the prospects for hydrogen refueling infrastructure for long-distance commercial vehicles.

Current prototypes and small fleets of hydrogen trucks generally use 350-bar compressed storage technology. This was originally developed for bus applications for local public transportation and therefore is tried and tested and readily available. This storage technology, fitted in existing installation space, enables a range of about 400 kilometers (250 miles) which is sufficient for many applications (e.g., back-to-base modes of operation).

For long-haul trucking, longer ranges of around 1,000 kilometers (620 miles) are desirable. To make this possible within the existing installation space, hydrogen storage technologies with a higher energy density are required. Three alternative hydrogen fuel options form the subject of current discussion: 700-bar compressed hydrogen, subcooled liquid hydrogen (sLH2) and cryogenic compressed hydrogen (CcH2).

Various manufacturers such as Nikola Motor and Toyota have already been trialing the 700-bar technology in pre-series vehicles. It can therefore be assumed that this technology will come into use for long-distance transportation. Due to the early stage of technical development, for example, it is still impossible to estimate at the moment whether one of the other two storage technologies will also penetrate the market.

In terms of realizable refueling quantities and speed, there is little to distinguish the three hydrogen fuel options. In each case, refueling 80 kilograms of hydrogen for a range of 1,000 kilometers (620 miles) can be completed within 10 to 15 minutes (see fig. 1). Nevertheless, these achievable refueling speeds and times are industry estimates which first need to be confirmed in real operation.

Prior to being launched onto the market, all three hydrogen fuel options will need to go through the international standardization process, both for the refueling process and for the refueling couplings. This will ensure the interoperability between vehicles and filling stations of different manufacturers and in different countries. Initial ISO standardization procedures have already begun.

Road tanker, pipeline or on-site electrolysis

There are marked differences in how hydrogen is supplied to a refueling station and to a refueling system itself depending on which particular hydrogen fuel type is used (see fig. 2). In the case of 700-bar compressed hydrogen, the fuel can be delivered to the filling station either in gaseous or liquefied form. If it is provided as a gas, the fuel is supplied to vehicles by means of high-pressure compressors and high-pressure buffers that are operated at pressures of up to 1,000 bar. Hydrogen is dispensed either via overflow filling or via direct compression into the vehicle tanks through booster compressors.

If liquefied hydrogen is delivered, the pressure is raised while in its liquid state by a cryopump. Next, the pre-compressed hydrogen is evaporated and dispensed to the vehicle. The electrical energy requirement for the filling station is much lower for the liquid hydrogen pathway than for the compression of gaseous hydrogen. Even so, the upstream liquefaction of hydrogen is associated with a high level of energy input.

If sLH2 or CcH2 fuel is offered, then liquid hydrogen is the first choice for supplying the filling station. This can be fueled directly into the vehicle from the filling station’s storage tank via a transfer pump or cryopump.

The availability of liquid hydrogen in Europe is currently extremely limited. Across the whole continent, there are three locations with liquefaction capacities which are, however, already used for other purposes. Furthermore, their capacity is insufficient to supply future truck fleets with fuel. This becomes clear if you compare the capacities of today’s liquefiers with the expected capacities of future hydrogen refueling stations.

Today’s hydrogen liquefiers usually have a daily capacity of 5 to 30 metric tons. At Germany’s only liquefaction site, in Leuna, the capacity is, for example, 2 x 5 metric tons a day. In the medium term, the capacities for hydrogen filling stations are anticipated to be between 1 and 8 metric tons a day per station. Different studies assume a hydrogen fuel demand for Germany of 1.2 million to 1.8 million metric tons per annum for the year 2045 which will largely be driven by the demand from long-distance trucking.

It is clearly evident that for this to be achieved the capacity for liquid hydrogen has to be greatly expanded and, if necessary, supplemented by importing liquid hydrogen. This is also the case if the demand for hydrogen fuel is partially covered by the provision of gaseous hydrogen (e.g., for supplying vehicles with 350-bar or 700-bar storage technology).

Figure 3 shows two different layouts of hydrogen refueling stations with a dispensing capacity of more than 2 metric tons a day. The particular components needed vary depending on whether the hydrogen is delivered as a gas or liquid. Both setups require gas supply components, valves, sensors and a process control system.

Falling hydrogen costs

If you look at fuel costs in relation to distance traveled, a diesel price of EUR 1.4 per liter (including taxes) roughly corresponds to a hydrogen fuel price of EUR 5 per kilogram. The meta-evaluation of present studies reveals a decrease in hydrogen fuel costs of more than EUR 10 per kilogram today to around EUR 4 to EUR 6 per kilogram (excluding taxes). Depending on the study, this cost level is expected to be reached by 2030 or in the years thereafter. The available cost data in these studies relates almost exclusively to 700-bar fuel. Cost data on sLH2 and CcH2 is only available to a very limited degree but indicates a comparable cost level.

Achieving these decreases in cost requires savings to be gained through mass production and scaling along the entire hydrogen delivery chain, from hydrogen production to the refueling system. Also the entire delivery infrastructure needs to be well utilized. In addition, optimized supply and logistics concepts must be put in place. In order for cost parity to be reached between diesel and hydrogen fuel for the end user in terms of distance traveled, differentiated charges and/or taxes must be levied on both fuels.

The energy tax for diesel in Germany is currently EUR 0.47 per liter. By 2025 a carbon dioxide levy of around EUR 0.15 per liter will be added on top of this. These charges indicate that mile-for-mile cost parity could be achievable provided that hydrogen for fuel cell vehicles remains exempt from taxes. If a tax is levied on hydrogen fuel in the future, the charges on diesel would also have to be increased in parallel so that cost parity between the fuels is maintained.

For fuel cell vehicles to become a means of long-distance transportation in the years ahead beyond subsidized projects, the total transport costs must not exceed the level of conventional trucks with diesel engines. The fuel costs considered in the study are only a single element in this. Lowering the costs for vehicles or applying appropriate carbon dioxide charges/emissions-related road charges or energy taxes could together ensure overall cost parity.

About the study

The study was commissioned by e-mobil BW and was published by the H2BW platform which amalgamates activities relating to hydrogen and fuel cell technology in the German state of Baden-Württemberg. The authors are the company Ludwig-Bölkow-Systemtechnik and the Institute of Vehicle Concepts at the German Aerospace Center. The study investigated the current state of development and the prospects for hydrogen refueling infrastructure for commercial vehicles used in long-distance transportation.

Authors: Jan Zerhusen, Ludwig-Bölkow-Systemtechnik GmbH, Ottobrunn, Munich, Germany, Jan.Zerhusen@LBST.de
Mathias Böhm, Institute of Vehicle Concepts at the German Aerospace Center, Berlin, Germany, Mathias.Boehm@dlr.de

Kategorien: Germany | News
H2 Mobility :Schlagworte

Here are interesting and current articles on the topic of hydrogen – stocks and the stock market!

Economic prospects for companies in the hydrogen sector | Future, stocks & hydrogen companies on the stock exchange and more…

Which hydrogen companies will prevail in the competitive market in the long term? Get tips and cartwheels and learn more about risks or opportunities. Our stock market specialist and expert author Sven Jösting reports critically, independently and competently.

Nov 04 2024

Hydrogen in shipping

Practical test in container terminal At a container terminal in Hamburg, a test field for...
Nov 04 2024

Heat planning without hydrogen

Legal opinion is critical of hydrogen networks for household customers Hydrogen pipeline networks...
Oct 16 2024

Leaps in technology needed

Things have become quiet in H2 mobility. At the cafe tables and also on Facebook, the topic of...
Oct 16 2024

FC truck made in Sachsen

FES unveils H2 truck in Zwickau Where East Germany’s famous Trabant cars were once made, H2 trucks...
Oct 16 2024

The Green Deal is secure

But adjustments still need to be made In its last legislative period, the EU with the Green Deal...
Oct 09 2024

Bipolar plates without titanium in the electrolysis stack

Bipolar plates based on carbon can be a cheaper and, at the same time, scalable alternative to...
Oct 06 2024

Nikola Motors: Current Developments and Market Outlook

The press conference in February 2024 regarding the fourth quarter and the entire year of 2023 has...
Oct 06 2024

Revival in the H2 refueling station market

More providers and larger locations For some months now, more and more companies have been...
Oct 06 2024

H2 deflagration in Leuna

In the chemical park Leuna, there was an accident involving hydrogen on August 26, 2024. During a...
Sep 13 2024

H2 import strategy – more roundup than road map

At the end of July 2024, the German government published its long-awaited hydrogen import strategy...
Sep 13 2024

Core network without connection to West Berlin

On July 22, 2024, the transmission system operators submitted a draft application to the BNetzA to...
Sep 12 2024

ECA: H2 strategy needs “reality check”

Auditors consider targets to be unclear and unrealistic The EU has set itself overly ambitious...
Sep 12 2024

Fuel cells from the Arctic Circle

Gigawatt production planned in Norway The Norwegian company REC Solar once produced photovoltaic...
Sep 12 2024

LOHC could simplify H2 imports

Liquid bearer of hope Many of the technologies for H2 transport are not yet fully developed....
Sep 11 2024

The hydrogen partner site

Online marketplace brings together supply and demand Like a dating site, the international...
Sep 10 2024

Green hydrogen on the high seas

H2 generation on floating offshore wind power plants How to ramp up the production of green...
Sep 03 2024

GHG quota trading for green hydrogen

37th BImSchV enables extra revenue for renewable fuels Germany’s greenhouse gas reduction quota...
Aug 16 2024

More sustainability in the exhibition sector

Interview with Benjamin Low, STEP founder Trade shows are short-lived affairs involving a lot of...
Aug 16 2024

We mourn the loss of Sven Jösting

Our analyst died unexpectedly A moment ago he was among us – now he is no longer. Sven Jösting...
Aug 16 2024

Shifts in Europe’s H2 funding environment

Market accessibility problems for German applicants When the European Hydrogen Bank’s first pilot...

0 Comments

Leave a Reply

Discover more from H2-international

Subscribe now to keep reading and get access to the full archive.

Continue reading