Contact

A new energy infrastructure is emerging

By Eva Augsten

May 30, 2024

Image titel: Effective but impractical: Ammonia test delivery via container in year 2022

Sources: Senatskanzlei Hamburg

A new energy infrastructure is emerging

“Green” and “blue” ammonia from other continents to come to Europe

Ammonia produced from electrolysis-generated hydrogen is to become the green energy carrier and sustainable basic chemical of the future. The infrastructure for the import is being created at lightning speed. In Hamburg and Brunsbüttel, new terminals are to start operation in 2026.

In the hydrogen sector, Japan has often been ahead of its time. In 2014, the Japanese government adopted its fourth strategic energy plan. Hydrogen and fuel cells were already high on the list back then. At the same time, various import options were to be investigated. One of them was ammonia.

Ammonia consists, as the chemical formula NH3 reveals, of nitrogen and hydrogen. If produced from hydrogen obtained electrolytically using renewable energies as well as nitrogen from the ambient air, it could become a climate-friendly energy source of the future. In contrast to pure hydrogen, it is comparatively easy to transport: Ammonia becomes liquid under ambient pressure “already” at ‑33 °C or at 20 °C with just under 9 bar. Additionally, the energy density of liquid ammonia lies with 11.4 GJ/m3 substantially over that of liquid hydrogen with 8.52 GJ/m3.

Cracking eats up energy
With so-termed crackers, the ammonia can basically be broken down into hydrogen and nitrogen again. However, this involves an endothermic process. The Fraunhofer Institute for system and innovation research (Fraunhofer ISI) therefore warns in a metastudy on hydrogen import against high conversion losses and high costs when ammonia is used as a carrier to get hydrogen again in the end.

But this is not necessary for all applications, since ammonia can also be used directly as a fuel. Especially in ship transport could ammonia be a promising fuel. Japan wants to use the pungent-smelling gas primarily in coal-fired power plants. There has already been a test run. Starting 2021, the companies JERA and IHI have substituted 20 percent of the fuel in a gigawatt-level coal-fired plant with ammonia. Now, the first commercial terminals are being built. A consortium around Mitsubishi wants to convert a terminal in the port of Namikata to ammonia, and the duo IHI and Vopak are checking where in Japan further import terminals could be built.

Europe setting the pace
Since the energy crisis, Europe has also been flooring it. For this, it is convenient that there are already commercial shipping routes for ammonia. Around 20 million tonnes are transported by ship annually, mainly for the production of fertilizers. That the fertilizer giant Yara International with 15 ships and access to 18 ammonia terminals operates, according to its own information, the largest shipping and logistics network for this is therefore no surprise. But if ammonia is to become an energy source, its transport will need to be able to increase significantly.

At the beginning of 2024, the Dutch Institute for Sustainable Process Technology (ISPT) published a “Clean Ammonia Roadmap.” Following this, alone in industry cluster Antwerp-Rotterdam-Rhine-Ruhr could up to 25 million tonnes of “clean” ammonia be generated and imported. The Port of Rotterdam could develop into a central transshipment and storage site. According to the ISPT study, up to three million tonnes annually could be further transported from the Netherlands and Belgium to Germany.

New and retrofitted terminals
To bring ammonia directly to Germany, several terminals are to be built or expanded. In Hamburg, October 2022, the port company HHLA test-imported ammonia in a shipping container from Abu Dhabi, with which the copper producer Aurubis was able to test the substitution of natural gas – an action that seems rather symbolic. For the real use, the energy company Mabanaft plans an import capacity of 600,000 tonnes per year, which is to be available starting 2026.

On the Blumensand Tank Terminal operated by Mabanaft’s subsidiary Oiltanking Deutschland, a tank for the storage of liquid ammonia is to appear. A cracker is to be able to split the ammonia into nitrogen and hydrogen. In preparation for the approval procedure, a so-termed scoping meeting has now taken place with the environmental authority, at which, together with directly affected neighbors, environmental groups and other specialists, the scope of the voluntary environmental impact assessment was discussed.

Via the new terminal in Brunsbüttel, RWE wants to import around 300,000 tonnes of green ammonia annually. Here, too, 2026 is targeted as the starting year. Not really that much when you compare it with the planned LNG terminal, through which 8 billion cubic meters of liquefied natural gas are to be transported to Germany every year. Comparing the energy content, that’s about 1,560 GWh of ammonia and 80,000 GWh of LNG.

RWE also announced plans to build a cracker to break down some of the ammonia back into hydrogen and nitrogen. Through the energy loss, the relationship between ammonia and LNG drifts further apart. RWE stressed, however, that a retrofit of the LNG terminal for ammonia is to be later possible.

Fewer headlines than the planned new construction have been made by both existing terminals of Yara in Brunsbüttel and Rostock, Germany, in contrast, which the company has so far only used for its own needs. Already about 600,000 tonnes of ammonia arrive in Rostock annually. In total, according to the company’s information, Yara has the ability to deliver 3 million tonnes of clean ammonia, if the demand is available.

Distribution by rail or pipeline
One of the first customers of Yara could be the Leipzig-based natural gas company VNG. The two companies signed a corresponding cooperation agreement in spring 2023. Also Mabanaft in Hamburg has already named the process gas producer Air Products as an anchor customer. RWE is currently examining whether and how ammonia can be further transported by rail in Germany. Also on board is the rail transport company VTG.

The transport of ammonia by rail is not new, but it carries a higher risk than by sea. After all, ammonia not only smells unpleasant, it also attacks the respiratory tract. In the past, accidents involving injuries or even fatalities have repeatedly occurred during transport by train and truck through busy areas, including in Serbia in December 2022 and in the US state of Iowa September 2023. The Bulgarian fertilizer company Agropolychim, after the accident, is now investing in a new fleet of ammonia tankers.

According to a study by Dutch think tank ISPT, pipelines could make the transport of ammonia over land much safer. There are so far around 7,600 kilometers of ammonia pipelines worldwide. In the past 50 years, there have only been eleven accidents, none of which resulting in fatalities.


Fig. 2: Starting 2030, LOTTE Chemical, Mitsubishi and RWE want to produce ammonia in Texas together, Source: RWE

Where does green ammonia come from?
Before the ammonia can be imported to Germany, however, it must first be produced. A hotspot for this is expected to be Namibia with its H2 megaproject Hyphen Hydrogen Energy. With the German company Enertrag as shareholder, the path to hydrogen is practically paved out. The megaproject is set to supply one million tonnes of ammonia, generated using wind and solar energy. Of this, RWE has already reserved 300,000 tonnes by means of a letter of intent. But looking at the quantities cited by ISPT, the currently targeted production in Namibia will not suffice.

RWE therefore has also reported a partnership with the Korean LOTTE Chemical and the Japanese Mitsubishi Group. Together, the companies are investigating the establishment of production of up to 10 million metric tons of ammonia per year in the US state of Texas. Involved are both “blue” and “green” ammonia, and production is to start in 2030. With this, RWE is equally fulfilling a recommendation of Fraunhofer ISI: Join forces with other future importing nations instead of creating a competitive situation.

Author: Eva Augsten

Energy Storage | hydrogen :Schlagworte

Here are interesting and current articles on the topic of hydrogen – stocks and the stock market!

Economic prospects for companies in the hydrogen sector | Future, stocks & hydrogen companies on the stock exchange and more…

Which hydrogen companies will prevail in the competitive market in the long term? Get tips and cartwheels and learn more about risks or opportunities. Our stock market specialist and expert author Sven Jösting reports critically, independently and competently.

Jul 22 2024

Port of Rotterdam turning green and blue

Europe’s largest port wants to become sustainable “How quickly can we implement the energy...
Jul 22 2024

Rotterdam establishes itself as an H2 hub

Impressive size and professionalism A completely different league to Hannover Messe or Hy-Fcell in...
Jul 22 2024

Wystrach name change

The lengthy process to rename the company Wystrach is slowly coming to an end. As the tank...
Jul 22 2024

Sufficient water in Brandenburg

Water resources in the German state of Brandenburg have long been the subject of much discussion,...
Jul 22 2024

Partnership is the new leadership

Chancellor Olaf Scholz visits Hydrogen + Fuel Cells Europe The atmosphere was good. Not ecstatic,...
Jul 17 2024

Enertrag builds near Magdeburg

Despite challenging times, there are still reports of new H2 projects going ahead. For example, in...
Jul 17 2024

Wissing signs Berlin declaration

E-fuels – irrespective of their disputed suitability for the car sector – will be essential for...
Jul 15 2024

Only a third of NIP projects approved

Interview with Elena Hof, Paul Karzel and Jörg Starr from CEP The Clean Energy Partnership or CEP...
Jul 15 2024

Switzerland’s largest H2 plant

Energy group Axpo and the company Rhiienergie have launched the first H2 production plant for...
Jul 15 2024

Why hydrogen stocks can fall even further

Max Deml’s stock analysis In the past, hydrogen was usually isolated from fossil fuels such as...
Jun 13 2024

H2 Bank Selects Seven Projects”

The European Commission is allocating nearly 720 million euros to seven projects for renewable...
Jun 13 2024

World’s one-of-a-kind H2 test lab

Electrolyzers on the test bench In Hydrogen Lab Bremerhaven, manufacturers and operators of...
Jun 13 2024

First commercial green hydrogen production

Solar Global operates electrolyzer plant in Czech Republic An electrolyzer in the town of...
Jun 12 2024

Hydrogen 3.0

“Are we on the cusp of a hydrogen revolution or merely witnessing the build-up of another bubble?”...
Jun 12 2024

Mechatronic H2 pressure regulator

Up until now, Italian company Landi Renzo has been mainly known for its conversion sets for gas...
Jun 11 2024

Establishment of a metrological infrastructure

Flow measurement of high-pressure gas and liquid hydrogen In the field of flow measurement, the...
Jun 11 2024

FRHY Stack, first of its kind!

Technology platform for high-rate electrolyzer production The cooperative FRHY project, which...
Jun 10 2024

HySupply – German-Australian hydrogen bridge

Acatech and BDI show what’s feasible Defossilizing the energy system is an important goal of the...
Jun 05 2024

In the beginning was the refueling station

Creating planning security through the development of H2 infrastructure We have long discussed the...
Jun 04 2024

Digital potential

Low-cost green hydrogen through digitalization Plans to expand Germany’s hydrogen landscape are...

0 Comments

Leave a Reply

Discover more from H2-international

Subscribe now to keep reading and get access to the full archive.

Continue reading