Contact

Zero-emission power system for a river and coastal vessel

By

August 15, 2023

Image titel:

Sources:

Zero-emission power system for a river and coastal vessel

Hydrogen propulsion on the Coriolis

Shipping is responsible for roughly 3 percent of all carbon dioxide emissions around the globe. The International Maritime Organization or IMO therefore set itself the goal of at least halving this figure by the year 2050, relative to a 2008 baseline. Due to the high power requirements and the large distances traveled by ships, fully electric solutions are only possible in isolated cases. Hydrogen and its derivatives are therefore attracting increasing interest from the maritime industry because of their potential to greatly reduce ship emissions. The challenge in this sector is, firstly, how to store the hydrogen on board safely in a minimal amount of space and, secondly, how to engineer the overall energy system to meet various requirements while optimizing its control.

Advertisements

The Hitzler Werft shipyard in Lauenburg, Germany, is currently building the Coriolis research vessel for the Helmholtz-Zentrum Hereon research center in Geesthacht. The ship will be fitted with a diesel electric power system in addition to batteries and a hydrogen system. The latter was designed by Hereon together with the DLR Institute of Maritime Energy Systems and the engineering consultancy Technolog in Hamburg.

Hydrogen system lab on board

The hydrogen system lab – H2SL – is designed to be a hydrogen system that is spread across the vessel. The main components are a metal hydride tank, which was developed by Hereon, and a low-temperature proton exchange membrane (PEM) fuel cell. Accompanying these are various pieces of peripheral equipment, such as a bunker station for hydrogen, a tank connection space at the metal hydride tank and two vent masts.

For a comparably small vessel such as the Coriolis, whose length is just under 30 meters (100 feet), extremely careful consideration is needed when arranging the components. One of the reasons for this is because there are no binding regulations yet that govern the use of hydrogen on board.

The definition of hazardous zones and the distances that need to be maintained between ventilation facilities come from the IGF Code, which regulates the handling of low-flashpoint fuels in shipping and has been primarily used for liquefied natural gas up until now. The code does not yet take into account the special properties of hydrogen, for instance its much higher volatility compared with LNG. Among other things, this evident in the size and shape of the hazardous zones (see the spherical hazardous zones around the vents and air inlets). Work on the IGF Code is currently ongoing to extend its scope to include the use of hydrogen.

The tank system, consisting of an actual metal hydride tank and the mandatory inertable tank connection space, will be built on a 5-foot container base plate and have around half the height. In addition to the weight of the metal hydride itself, the overall weight is made up of the steel tank shells, pipework and, in particular, the pressure vessel of the tank connection space. The overall system volume of around 4 cubic meters (140 cubic feet) and an overall system weight of 5 metric tons mean that the tank system stores approximately 30 kilograms of hydrogen.

This allows the fuel cell to supply the ship with roughly 500 kilowatt-hours of green energy. That said, this can only happen if the bunkering of green hydrogen is actually possible and permitted – a challenge in itself, as initial exploratory talks with port authorities and hydrogen producers have shown.

Prior to the shipyard tender, the energy requirement for craft propulsion was ascertained at SVA Potsdam using a model test and subsequently scaled up. The shape of the Coriolis is optimized for operation at low speed as this matches the primary operating profile of inshore journeys (see fig. 3).

Due to the low power requirement for creep speed, the fuel cell, which will have a rated electrical power of around 100 kilowatts, can be used in combination with the battery for numerous monitoring activities and in the other operating states of the Coriolis e.g., during layovers, without having to switch on a diesel engine. As well as the propulsion system, the electrical consumers on board also need to be supplied, although these only require a fraction of the power needed for propulsion.

Metal hydride tanks

From Hereon’s perspective, the following properties make metal hydride or MH tanks attractive for a range of maritime applications:

  • Moderate loading pressures of well under 100 bar at operating temperatures below 100 °C
  • Cold start of a MH tank possible in principle even at temperatures below 0 °C (Hereon EP 3 843 190)
  • By the very nature of MH tanks, the hydrogen is chemically bound meaning the tanks cannot suddenly release large quantities of hydrogen, which is a significant on-board safety advantage.
  • The low loading pressures allow a flexible structural form which makes it easy to adapt to the shape of the ship à saves space. Today’s pressurized hydrogen tanks take up a lot of room, especially on small vessels, which reduces valuable cargo space.
  • The high weight can even be advantageous in certain applications, e.g., for sailing ships where it can be used instead of the obligatory “deadweight” ballast for stability.

Research in the H2SL

Hereon and DLR are working together to investigate which types of ship are best suited to the combination of a low-temperature fuel cell and a metal hydride tank for the propulsion system. The goal of the two research institutes is to create a guiding principle that enables the Coriolis energy system concept to be adapted and integrated easily into other ships and types of craft.

The H2SL offers many more opportunities to pursue innovative research approaches in addition to facilitating zero-emission operation. Hereon and DLR are planning an intensive program of research using the power system and are expecting to gain valuable knowledge and real-time data on relevant research issues. This will be made possible by running the H2SL in a real maritime environment with the option to access operating data remotely online and immediately adjust the control parameters. The effects of these changes will then be the subject of further study.

DLR will develop a digital twin of the hydrogen energy system based on the operating data in order to produce a continuous record of the system status, optimize the system control and derive feedback for the operation.

What’s more, the information should allow operational strategies to be developed for the Coriolis’ hybrid energy system. The variation in energy sources, i.e., battery, fuel cell and combustion engine, creates a high degree of flexibility with regard to operation in a wide range of energy consumption scenarios. The goal is to achieve an optimal balance in relation to fuel consumption and operating costs through intelligent load sharing for a wide variety of traveling and loading states.

A benefit of carrying out this kind of investigative work on a research vessel is that strategies developed from theoretical principles can be transferred directly to the energy management system, allowing them to be swiftly validated during operation.

Hybrid energy systems are being built into ships with increasing frequency. The knowledge gained from sailing the Coriolis will supply valuable information in future that can also be transferred to other types of craft and thus contribute toward reducing emissions in the maritime sector.

Source: Hereon, Technolog Services, SV Atech
Authors: Klaus Taube, Hereon, Geesthacht, Germany, klaus.taube@hereon.de
Volker Dzaak, Hereon, Geesthacht, Germany

 

Kategorien: Europe | Germany | News
Energy Storage | Geitmann :Schlagworte

Here are interesting and current articles on the topic of hydrogen – stocks and the stock market!

Economic prospects for companies in the hydrogen sector | Future, stocks & hydrogen companies on the stock exchange and more…

Which hydrogen companies will prevail in the competitive market in the long term? Get tips and cartwheels and learn more about risks or opportunities. Our stock market specialist and expert author Sven Jösting reports critically, independently and competently.

Apr 30 2024

“Cool, what you’re doing in Germany”

“Today is a good day for industry location Germany, climate protection and sustainable jobs in our...
Apr 30 2024

DWV shortens its name

As of January 2024, the DWV has a slightly shorter name. Instead of being called the German...
Apr 30 2024

Changes at CEP

New board, new members and a new structure – that’s the news in the latest press release from the...
Apr 18 2024

Plug Power – Price jumps with many questions

The Plug share price fell quickly to under 3 USD (2.50 USD at low) and then rose again to over...
Apr 17 2024

Siemens Energy – Light at the end of the tunnel

Siemens Energy is on the right track, as the latest figures show. Although the wind subsidiary...
Apr 17 2024

Nikola Motors – Outlook speaks for the company

The press conference in February 2024 on the fourth quarter results and the entire year 2023 and,...
Apr 17 2024

Hyzon Motors – Strong patent position

Hyzon Motors will start production of 200‑kW modules for commercial vehicles in the USA in the...
Apr 17 2024

FuelCell Energy – Carbon capture as a growth story?

FuelCell Energy has with SOFC fuel cell power plants built its own capacities for clean energy...
Apr 16 2024

Hydrogen economy gaining speed

Trade fair guide for Hannover Messe 2024 AI and hydrogen are the focus of this year's Hannover...
Apr 16 2024

Politicians with an open ear for hydrogen

Optimism at the H2 Forum in Berlin A good 450 participants gathered at the specialist conference...
Apr 16 2024

Gas producers are the winners of the H2 ramp-up

The major international gas companies such as Linde, Air Liquide and Air Products have always been...
Apr 15 2024

Cummins Engine – Emissions scandal ended by payment

The share of Cummins Engine brings joy: The share price rose to a new high for the year, after the...
Apr 15 2024

Ceres Power with strong partners

The main shareholders Bosch and Weichai are already counting on the English Ceres Power and their...
Apr 15 2024

Group rotation will drive hydrogen forward

Sven Jösting’s stock analysis #Shares from the crypto universe and from many technology companies...
Apr 15 2024

Wissing releases former NOW chief from duties

Background to the Bonhoff/BMDV split Things had quietened down on the Bonhoff front. But then new...
Apr 11 2024

Bloom Energy convincing in the long haul

Bloom Energy is planning a cooperation with Shell to use its SOEC technology for the large-scale...
Apr 11 2024

Ballard – Prospects better than current market valuation

The share price of Ballard Power is at an all-time low. The published figures for the fourth...
Mar 18 2024

Search for the ideal hydrogen storage

Interview with Thomas Korn, CEO of water stuff & sun Startup company water stuff & sun has...
Mar 15 2024

Is exponential growth slowing down?

Fuel Cell Industry Review 2022 Year 2022 saw fuel cell shipments creep up over 2021 numbers,...
Mar 11 2024

On the way to becoming a green hydrogen partner

Oman aims to score points with H2 infrastructure Wind, sun and loads of expertise – these...

0 Comments

Trackbacks/Pingbacks

  1. Zero-emission power system for a river and coastal vessel – h2-tracker - […] Hydrogen propulsion on the Coriolis Shipping is responsible for roughly 3 percent of all carbon dioxide emissions around the globe.…

Submit a Comment

Your email address will not be published. Required fields are marked *