Contact

Ride on a Fuel Cell Train

By

October 2, 2017

Image titel:

Sources:

Ride on a Fuel Cell Train

Coradia

Coradia ILint, © Alstom

The zero-emission future of the transportation sector has prompted an increasing number of energy policy debates on railroad electrification. At Hannover Messe, it was Alstom’s new fuel cell train that garnered much attention. After having been developed in less than two years, it had its first run in mid-March and will reportedly be used to transport passengers starting in 2018.

The attention of fuel cell stakeholders is slowly but gradually shifting away from personal transport and turning to railroad and commercial operations. Whereas European automakers are not pulling out all the roadblocks when it comes to fuel cell development, it seems that everyone else is beginning to view hydrogen as a plus for heavier vehicles (buses, trucks and trains) to extend their range way beyond what batteries would be capable of on their own. Hydrogen-powered trains and fuel cell trucks could soon be outmaneuvering H2 cars.

Right on schedule

Up to now, everything has been right on schedule. On May 27, 2015, Alstom Transport signed an exclusive agreement with Hydrogenics, a technology supplier from Canada (see October 2015 issue of H2-international). Valued at over EUR 50 million, it has provided the grounds for a ten-year collaboration between both businesses and the prospect of at least 200 drive systems based on the HD series by the Canadian-based business. Last year, Alstom received the first fuel cell system based on this agreement and presented it to the public as part of the Coradia LINT prototype at InnoTrans 2016. It said that the March test trip was the first of a low-floor fuel cell passenger train at 80 kph (50 mph). The train didn’t leave the company’s own track system in Salzgitter, and the next scheduled tests at up to 140 kph (87 mph) will be done in Velim in the Czech Republic. But in 2018 – just around three years after the agreement was signed – it will make its first regular run from Buxtehude to Bremervörde and Bremerhaven to Cuxhaven (see November 2016 issue of H2-international).

Innovative technologies

With EUR 8 million in support from the National Innovation Program Hydrogen and Fuel Cell Technology, Alstom converted a diesel model from the Coradia LINT family into a fuel cell version. Two units offer enough room for 300 passengers (150 seats) and have been equipped with an entirely new smart energy grid supplying power on demand to all components of the train.

Energy is stored in the roof-mounted hydrogen tanks manufactured by Xperion and installed by Wystrach. The roof is also the place where the Hydrogenics fuel cell system is located. The lithium-ion batteries were placed between the train wheels, where they can additionally be used to recover braking energy.

The electric-only version guarantees low noise levels, but apart from that, it is comparable to any other regional train – just more environmentally friendly and without the need for overhead lines. Its range is said to be 800 kilometers or 497 miles per day at a maximum speed of 140 kilometers or 87 miles per hour. Alstom developed the technology jointly in Salzgitter and Tarbes, France. It has already been TÜV-certified and will reportedly have railroad administration approval by the end of this year.

Lower Saxony backs fuel cell network expansion

There was even an entire podium discussion dedicated to fuel cell trains at the Public Forum of the joint H2 and fuel cell booth at Hannover Messe. Jens Sprotte, director of urban transport & systems at Alstom Transport Deutschland, was pleased to announce that “zero-emission commuter rail will come – as early as the end of this year.”

Lower Saxony’s economy minister, Olaf Lies, who was visibly proud of the fact that these railcars will both be run in the state and be manufactured in one of its cities, Salzgitter, added: “We are talking about really substantial figures here. […] My colleagues from other states quickly jumped on the bandwagon, so to speak. […] This means an actual, big roll-out over the coming years and consequently, a chance to bring a technology that is in heavy use at home to the global market.” Alstom’s statement that it had already signed letters of intent for 60 railcars with Lower Saxony, North Rhine-Westphalia, Baden-Württemberg and Rhein-Main-Verkehrsverbund in Hesse fitted right in.

Sprotte stressed that it had been important to Alstom not to end up in the same situation as the automotive industry, an allusion to the chicken-and-egg dilemma in hydrogen supply. “If we want to grow the segment, we need to offer a complete package. We will look for a reliable business partner to supply the hydrogen,” he said. It is the reason for Alstom investing not only in train development and maintenance, but also in an H2 infrastructure. Sprotte said that an all-in-one approach would make it “possible to drive down costs and outcompete diesel engines.” He added: “There’s no option that can match a fuel cell’s viability in heavy duty applications and commuter rail.”

From “gray” to green hydrogen

In the beginning, 70 percent of the hydrogen required for the new train system is said to come from the chemical industry. This byproduct of chemical reactions called “gray hydrogen” will later be supplanted by gas produced through electrolysis, meaning “green hydrogen.” However, Sprotte added that the big problem was the cost of electricity. “The renewable energy surcharge adds eight to ten cents to the price tag. It is our hope that the next years will see changes in this policy, so that we can make large-scale use of electrolyzers.” The only reply Klaus Bonhoff, chair of NOW, could give was that the issue was “being debated intensively” and that there had already been many people who had “realized that there is great potential.”

Olaf Lies immediately followed up by saying: “We need to double our efforts to install a decentralized H2 infrastructure – be it for passenger cars, trucks, buses or trains. This expansion will require an increase in the use of electrolysis.”

Some German states have already started requesting bids for zero-emission commuter rail, putting Alstom in competition with other businesses, for example, from the battery industry. GP Joule’s managing director, Ove Petersen, has said that his company was currently bidding on a project to adapt diesel train tracks for fuel cell use. This one project alone would require 20 megawatts of electrolysis capacity, he said.

Kategorien: Germany

Here are interesting and current articles on the topic of hydrogen – stocks and the stock market!

Economic prospects for companies in the hydrogen sector | Future, stocks & hydrogen companies on the stock exchange and more…

Which hydrogen companies will prevail in the competitive market in the long term? Get tips and cartwheels and learn more about risks or opportunities. Our stock market specialist and expert author Sven Jösting reports critically, independently and competently.

Dec 09 2024

Golden harvest without electrolysis

Hydrogen through photocatalysis The startup Yellow SiC from Berlin is working on an innovative...
Dec 03 2024

A revolution from Germany

HAZOP analysis with AI support In the year 1999, Christian Machens developed the world's first...
Dec 02 2024

The digital world of hydrogen

Data provides key to green hydrogen economy Green hydrogen is considered one of the key...
Dec 02 2024

High-speed micro-milling of very hard steels for bipolar plates

Insights into a rapidly developing technology Extremely high demands are placed on tools for...
Nov 18 2024

Hydrogen putting pedal to the metal

Metal hydride storage as a complete system GKN Hydrogen has developed a complete containerized...
Nov 13 2024

First cross-border hydrogen educational project in Europe – Hydrogen for top managers.

Two German universities in Oldenburg and Hanover and the Polish training company Studium Wodoru...
Nov 11 2024

Vast storage potential in northern Germany

Salt domes as H2 storage sites A successful ramp-up of the hydrogen market would be impossible...
Nov 11 2024

An investment fund exclusively for hydrogen

Interview with Carmen and Gerd Junker, Grünes Geld GmbH The current economic uncertainty is also...
Nov 11 2024

H2CE – Strengthening the H2 Regions in Central Europe

Regions series: Berlin-Brandenburg The project H2CE, initiated and led by the Gemeinsame...
Nov 07 2024

Development platform CleanEngine

Dynamic-energetic optimization of light FC commercial vehicles The challenge in designing a fuel...
Nov 04 2024

An own production facility for FC systems

Still produces in new factory in Hamburg The intralogistics industry, too, must reduce its CO2...
Nov 04 2024

Hydrogen in shipping

Practical test in container terminal At a container terminal in Hamburg, a test field for...
Nov 04 2024

Heat planning without hydrogen

Legal opinion is critical of hydrogen networks for household customers Hydrogen pipeline networks...
Oct 16 2024

Leaps in technology needed

Things have become quiet in H2 mobility. At the cafe tables and also on Facebook, the topic of...
Oct 16 2024

FC truck made in Sachsen

FES unveils H2 truck in Zwickau Where East Germany’s famous Trabant cars were once made, H2 trucks...
Oct 16 2024

The Green Deal is secure

But adjustments still need to be made In its last legislative period, the EU with the Green Deal...
Oct 09 2024

Bipolar plates without titanium in the electrolysis stack

Bipolar plates based on carbon can be a cheaper and, at the same time, scalable alternative to...
Oct 06 2024

Nikola Motors: Current Developments and Market Outlook

The press conference in February 2024 regarding the fourth quarter and the entire year of 2023 has...
Oct 06 2024

Revival in the H2 refueling station market

More providers and larger locations For some months now, more and more companies have been...
Oct 06 2024

H2 deflagration in Leuna

In the chemical park Leuna, there was an accident involving hydrogen on August 26, 2024. During a...

1 Comment

  1. Arno A. Evers

    Just have a closer look at this article:
    Quote.
    >>>In the beginning, 70 percent of the hydrogen
    required for the new train system is said to come from the chemical industry.
    This byproduct of chemical reactions called “gray hydrogen” will later be supplanted by gas produced through electrolysis, meaning “green hydrogen.”
    However, Sprotte added that the big problem was the cost of electricity.
    “The renewable energy surcharge adds eight to ten cents to the price tag.
    It is our hope that the next years will see changes in this policy,
    so that we can make large-scale use of electrolyzers.”
    The only reply Klaus Bonhoff, chair of NOW, could give was
    that the issue was “being debated intensively” and that there had already been many people who had “realized that there is great potential.”…<<<
    Unquote.
    Let me tell you something from my personal and global experiences
    since 1995 with that topic: http://www.hydrogenambassadors.com/projects.html
    This attitude, as described above will NOT bring a breakthrough.
    Nor will it motivate any people, to support the Implementation of Hydrogen
    and Fuel Cells into the energetic reality.
    See here, why and what to do next:
    https://www.youtube.com/watch?v=Tk7B8wpr6qg
    How to unveil unknown business potentials for Hydrogen, Fuel Cells and Batteries
    An exclusive interview, given on April 24, at the annual Hannover Fair 2017

    Reply

Leave a Reply

Discover more from H2-international

Subscribe now to keep reading and get access to the full archive.

Continue reading