Contact

Better cleaning for maximum performance

By Doris Schulz

December 12, 2023

Image titel: The use of several nozzles allows carbon dioxide snow-jet cleaning to rapidly treat the entire surface of bipolar plates and achieve a good result

Sources: Ecoclean GmbH

Better cleaning for maximum performance

Effective and efficient cleaning of metal bipolar plates

Low weight and volume, good cold-start capability and relatively inexpensive series production are all benefits associated with metal bipolar plates. These key elements in fuel cell stacks are responsible for handling the essential tasks of supplying media, creating an electrical connection and cooling. Their ability to perform these well depends on factors such as the cleanliness of both the material and the joined plate. Ecoclean has trialed a variety of processes to find the most effective and economical method of cleaning.

Advertisements

Fuel cells are among the key technologies for enabling the electrification of vehicle propulsion systems and also have a major part to play in the energy transition as a stationary energy source. At the heart of a fuel cell system are the bipolar plates or BPPs that are connected to the stacks. BPPs consist of an anode and a cathode with a proton-conducting film sandwiched between them.

BPPs fulfill a variety of tasks: They physically and electrically connect the anode of a cell to the cathode of the neighboring cell. They are also responsible for conveying the reactant gases – hydrogen on the anode side and air on the cathode side. For this purpose, the plates are designed with flow fields on both sides whose form is crucial for the performance of the overall system. In addition, the BPPs control the release of electrical energy and the removal of water vapor. Another function they perform is the management of heat.

Plates can be manufactured from different materials: high-concentration graphite, graphite-polymer composites and metals. Metal bipolar plates offer advantages particularly when it comes to their use in automobiles. This is because they are low in weight and volume and have a good cold-start capability. What’s more, metal BPPs offer the potential for comparatively cost-effective series production which can be further improved through scaling.

Clean for quality and efficiency

The anode and cathode of metal BPPs are predominantly made from stainless steel alloy foils with a thickness of 0.1 mm to 0.2 mm. The material is usually rolled off a coil whose surfaces are contaminated during manufacturing by different rolling and drawing greases, oils, emulsions and other unknown impurities. In the next step, the anode and cathode foils are precisely reshaped in a mechanical or hydroforming process and the outer contours are cut, for instance, by punching or laser cutting.

Residual machining fluids (oils and/or emulsions) are also left on the plates following these processes. When the anode plate and cathode plate are subsequently joined, commonly in a laser welding process, this results in smoke residue and oxide being left behind. Finally, the bipolar plates are coated. A cleaning stage must be performed prior to the plates being coated, if not earlier, to ensure a homogeneous coating with good adhesion.

For tightly packed fuel cells, which are required to achieve a high output in minimal space, it is recommended that cleaning takes place before the joining stage. This prevents impurities becoming trapped between the anode and cathode which can become loose when the temperature rises during operation and block the microstructures of the flow fields. This would lead to a decrease in performance. At the same time, the intermediate cleaning stage will reduce the surface contamination from smoke residue and oxides during the laser welding process.

Choosing the right process

A key challenge in cleaning metal BPPs is the presence of usually invisible chemical film residue on the surfaces. This may be oils, greases, emulsions or other chemicals that are often of unknown composition. These unidentified contaminants require a cleaning solution that ensures they are removed reliably and appropriately. This is why German company Ecoclean has carried out experiments using laser and carbon dioxide snow-jet cleaning, wet-chemical solvent cleaning as well as steam-jet cleaning.


Fig. 2: Steam cleaning works due to a combination of steam, a precise quantity of fluid for the job, high-speed air flow and an adapted nozzle system

Both the laser and carbon dioxide snow-jet methods effectively removed smoke residue, oxide, chemical film contamination and particles from the welded seams of the joined bipolar plates with pin-point precision and within a matter of seconds. Good results were also recorded for both processes when cleaning whole BPP surfaces. Because the laser has to travel over the surface line by line, this option is time consuming. In the case of carbon dioxide snow-jet cleaning, the system can be fitted with an appropriate number of nozzles, thereby allowing for rapid treatment of the entire surface.

Wet-chemical cleaning with solvent using a flood method was able to successfully remove oils, greases and particles. However, it is not suitable for cleaning off emulsions, smoke residue and oxides. Wet-chemical immersion cleaning with water-based media is only possible to a limited degree due to the drying required and the considerable effort involved.

Good results were also achieved when using steam jets to clean chemical film and particulate contamination as well as smoke residue and oxides. For this process, the cleaning effect comes from a combination of steam, a precise quantity of fluid for the job, high-speed air flow and an adapted nozzle design. The cleaning procedure also takes just a few seconds.


Fig. 3: Analysis from infrared spectroscopy showed that steam cleaning completely removed the residue of the reference contamination

Controlled cleaning validation

Cleaning results are verified using the surface tension through the measuring techniques of contact angle measurement and test inks, fluorescence measurement and infrared spectroscopy. The fluorescence measuring technique proved to be unsuitable due to the absence of fluorescent contaminants. In terms of the input measurements for surface tension, the bipolar plates produced very different contamination values which were significantly reduced after cleaning.

A general statement about whether the component has a sufficient level of cleanliness for the next processing step cannot be made. For this to be possible, it would be necessary to determine appropriate process-specific requirements. For infrared spectroscopy, all residue on the test pieces (coil sections and BPPs) was first removed to establish a reference cleanliness. After the surfaces of the test pieces were analyzed using infrared spectroscopy, the test pieces were contaminated with reference contamination before being cleaned and then reanalyzed. This analysis then showed that steam cleaning managed to reliably remove chemical film contamination.

The cleaning trials and tests outlined were carried out in Ecoclean’s test center in Monschau by experts in component cleaning and surface treatment using the methods described as well as other techniques.

Automated cleaning

For an efficient workflow, it is possible for cleaning to be integrated prior to joining and/or coating in production lines. Automation can be adapted and optimized to suit the specific requirements and conditions of each production line.

Ecoclean is part of the SBS Ecoclean Group which develops, produces and distributes cutting-edge equipment, systems and services for industrial component cleaning and surface treatment. Its solutions help companies around the world from the automotive and supply industries as well as the highly diversified industrial market to implement efficient and sustainable production processes. The group has an international presence with 12 sites in nine countries and employs more than 900 staff.

Kategorien: Europe | Germany | News
Germany | hydrogen :Schlagworte

Here are interesting and current articles on the topic of hydrogen – stocks and the stock market!

Economic prospects for companies in the hydrogen sector | Future, stocks & hydrogen companies on the stock exchange and more…

Which hydrogen companies will prevail in the competitive market in the long term? Get tips and cartwheels and learn more about risks or opportunities. Our stock market specialist and expert author Sven Jösting reports critically, independently and competently.

Apr 18 2024

Plug Power – Price jumps with many questions

The Plug share price fell quickly to under 3 USD (2.50 USD at low) and then rose again to over...
Apr 17 2024

Siemens Energy – Light at the end of the tunnel

Siemens Energy is on the right track, as the latest figures show. Although the wind subsidiary...
Apr 17 2024

Nikola Motors – Outlook speaks for the company

The press conference in February 2024 on the fourth quarter results and the entire year 2023 and,...
Apr 17 2024

Hyzon Motors – Strong patent position

Hyzon Motors will start production of 200‑kW modules for commercial vehicles in the USA in the...
Apr 17 2024

FuelCell Energy – Carbon capture as a growth story?

FuelCell Energy has with SOFC fuel cell power plants built its own capacities for clean energy...
Apr 16 2024

Hydrogen economy gaining speed

Trade fair guide for Hannover Messe 2024 AI and hydrogen are the focus of this year's Hannover...
Apr 16 2024

Politicians with an open ear for hydrogen

Optimism at the H2 Forum in Berlin A good 450 participants gathered at the specialist conference...
Apr 16 2024

Gas producers are the winners of the H2 ramp-up

The major international gas companies such as Linde, Air Liquide and Air Products have always been...
Apr 15 2024

Cummins Engine – Emissions scandal ended by payment

The share of Cummins Engine brings joy: The share price rose to a new high for the year, after the...
Apr 15 2024

Ceres Power with strong partners

The main shareholders Bosch and Weichai are already counting on the English Ceres Power and their...
Apr 15 2024

Group rotation will drive hydrogen forward

Sven Jösting’s stock analysis #Shares from the crypto universe and from many technology companies...
Apr 15 2024

Wissing releases former NOW chief from duties

Background to the Bonhoff/BMDV split Things had quietened down on the Bonhoff front. But then new...
Apr 11 2024

Bloom Energy convincing in the long haul

Bloom Energy is planning a cooperation with Shell to use its SOEC technology for the large-scale...
Apr 11 2024

Ballard – Prospects better than current market valuation

The share price of Ballard Power is at an all-time low. The published figures for the fourth...
Mar 18 2024

Search for the ideal hydrogen storage

Interview with Thomas Korn, CEO of water stuff & sun Startup company water stuff & sun has...
Mar 15 2024

Is exponential growth slowing down?

Fuel Cell Industry Review 2022 Year 2022 saw fuel cell shipments creep up over 2021 numbers,...
Mar 11 2024

On the way to becoming a green hydrogen partner

Oman aims to score points with H2 infrastructure Wind, sun and loads of expertise – these...
Mar 07 2024

We can master a scale-up for green hydrogen

Interview with Dr. Kai Fischer, Director at RWTH Aachen The efficient scaling of green hydrogen...
Mar 07 2024

Frustration over continuing uncertainties

Interview with Jorgo Chatzimarkakis, CEO of Hydrogen Europe There is a lot that needs sorting out...
Mar 05 2024

“If ever there was momentum for hydrogen, it is now”

Interview with Dr. Jochen Köckler, chairman of Deutsche Messe “We’re bringing people together.”...

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *