Contact

Frustration over continuing uncertainties

Frustration over continuing uncertainties

Interview with Jorgo Chatzimarkakis, CEO of Hydrogen Europe

There is a lot that needs sorting out at a political level: A large number of industry representatives are waiting for politicians in Brussels and Berlin to put regulatory safety nets in place so they can make appropriate decisions about their investments. H2-international asked Jorgo Chatzimarkakis, Europe’s “Mister Hydrogen” and CEO of Hydrogen Europe, about the European Union’s revised Renewable Energy Directive (RED III) and its Important Projects of Common European Interest (IPCEIs). The interview also touched on Germany’s 37th Ordinance on the Implementation of the Federal Immission Control Act (37th BImSchV) as well as the recently revealed problems with fuel cell buses and their refueling stations. His guest article about H2Global appears on page 48.

Advertisements

H2-international: Mr. Chatzimarkakis, fortunately the adoption of RED III didn’t take as long as RED II. What do you think of the outcome?

Chatzimarkakis: The adoption of RED III is a positive step for the hydrogen industry in Europe. It provides clarity and the basis for funding and developing hydrogen projects and applications. That said, it’s important that it’s swiftly implemented so that the sector has the necessary planning certainty to make investment decisions.

Advertisements

The extremely arduous procedure for IPCEI projects has been a massive headache for the H2 industry. Apparently there should now be some movement. Can you confirm that and shed some light on it?

Yes, the delays in IPCEI projects have troubled the industry, caused by bureaucracy at either a European or national level. The consequence has been that funding recipients have to wait too long and then they back out. That harbors the risk that projects could be carried out in the USA, for example. We can’t afford to lose any time as the creeping deindustrialization process is accelerated by such unnecessary delays. To counteract this, I was able to get things moving for one process or another. The IPCEI initiatives are crucial for the development of the hydrogen economy and the funding of innovation. It’s important that the bureaucratic hurdles are surmounted so these projects can move forward.

What feedback do you get from your members? Do they regret having applied in the first place?

Some of our members have expressed concerns about the long delays for IPCEI projects. They have invested considerable resources in the applications and are waiting for the green light in order to move their projects forward. It’s understandable that they are frustrated by the continuing uncertainties.

What’s your advice? To forgo funding and start something quickly themselves or to continue to wait?

The decision whether to forgo funding and start independently or to wait depends on each company’s individual circumstances. However, it’s important that funding is released as quickly as possible to support urgently needed hydrogen projects and accelerate rollout.

Sadly, the production of green hydrogen is still associated with high capital expenditure and financial risks. Despite funding, the long-term operation of a plant for producing green hydrogen on an industrial scale is often not viable. That’s why we still need alternative hydrogen production pathways which can produce more competitively.

Let’s turn our attention to Germany: Many have been waiting a number of years for the 37th BImSchV. To your knowledge, when will there be a new ordinance and what, to your knowledge, will it contain?

It’s regrettable that the revision of the 37th BImSchV is taking so long. Unfortunately, I don’t have any precise information on when a new ordinance is expected or what it will contain exactly. However, it’s essential that the ordinance takes into consideration the needs of the hydrogen industry and the requirements for reliable and efficient hydrogen production.

Allow me to ask two or three questions about the open letter that Hydrogen Europe recently received (H2-international has a copy). In it, various high-ranking industry representatives from the JIVE, JIVE 2 and MEHRLIN project consortium ask for an “improvement to the hydrogen refueling infrastructure for FC buses.” Did you receive this letter?

Yes, we received the open letter. We take the concerns of the industry representatives very seriously. Improving the hydrogen refueling infrastructure for fuel cell buses is of critical importance to support the spread of eco-friendly means of transportation. Waste-to-hydrogen, in particular, could be a piece in the puzzle. That’s because the costs of production, for example from biogas, are two to three euros per kilogram. Combined with the GHG quota, that quickly becomes viable.

The letter also says: “The members of the consortium are convinced that FC buses can be a practicable option for public transport throughout Europe. They have proven themselves to be reliable and have been well received by both passengers and bus drivers. However, the consortium is of the opinion that the technical readiness and the capabilities of hydrogen refueling stations (HRS) fall well below the requirements for the operation of an FC bus fleet. The consortium believes that this represents a huge obstacle and a limitation for the commercialization and proliferation of FC buses and could in fact represent a challenge for FC vehicles across Europe and perhaps, indeed, the world.” You are urged in this letter to recognize the significance of this problem and to conduct talks with industry about possible solutions as a matter of urgency. What’s your response to this?

The consortium’s concerns are justified. We’re supporting efforts to improve the hydrogen refueling infrastructure for fuel cell buses. For instance, we and our member companies are actively involved in standardization in this area – for example with ISO and UNECE. It’s important that industry and political decision-makers work together to find solutions to this challenge and to ensure that fuel cell buses are able to realize their full potential.

What’s more, AFIR [Alternative Fuel Infrastructure Regulation] is sure to have a very positive effect on the ramp-up in refueling. It obliges EU member states to build hydrogen refueling stations at central European intersections and in city hubs. We’ve calculated that up to 600 refueling stations in total will need to be built within the EU by 2030. That will give a considerable boost to users of fuel cell buses.

Does that mean you will address this problem – including in the interests of your association members?

Yes, Hydrogen Europe is actively addressing this issue and is advocating for the improvement of hydrogen refueling infrastructure. We are committed to representing the interests of our association members and driving forward the development of the entire hydrogen economy in Europe.

Interviewer: Sven Geitmann

Extracts from the open letter

“If there is something needed for the commercial operation of buses in public transport systems, then it is an HRS that is reliable and available for operation. This basic standard is frequently unmet at current refueling units. Almost all sites in the JIVE, JIVE 2 and MEHRLIN projects experienced considerable downtimes for the refueling unit, meaning that vehicles were not deployable.”

“It took many months to achieve a reliable and robust refueling process, and during that time numerous faults occurred in the course of the refueling process which took considerable time to be remedied by the supplier – and this despite the inherent redundancy of the station.”

“Consortium members report problems with a range of essential hydrogen dispensing equipment. These problems are surprising given the extensive experience of hydrogen handling in industry.”

“Furthermore, the problems and comments are similar to those reported in numerous projects in the early 2000s. It is remarkable and extremely disappointing that the performance of compressors for the refueling of FC buses has clearly not yet reached the level necessary for the operation of a commercial fleet.”

“The project sites have reported that data transmission is often interrupted which causes refueling to stop or leads to refueling taking longer than necessary. The sensor in the nozzle is not robust. If it fails, the entire fuel nozzle unit has to be replaced at a cost of EUR 10,000.”

“Significant problems occurred in buses when tanks were converted from Type 3 to Type 4. At least in some cases, this appears to be due to information from the bus manufacturers not being passed on to the HRS OEMs.”

“Indeed, the HRS availability targets of above 98 percent had already been met, e.g., by some sites in the CHIC project; yet this level of performance was only achieved with considerable deployment of staff and financial input, in other words with higher costs.”

“Commercial operators require their vehicles to be available whenever and wherever they are needed (and at reasonable operating costs). This is perhaps the most important variable considered by operators if they are contemplating investments in new or additional vehicles. If they cannot be certain that the vehicles can be refueled when needed, none of the plans for expanding the fleet of FC buses will go ahead.”

“It is our opinion that the continuing refueling problems must be resolved if the EUR 407 million that have been invested in FC buses over the past 20 years from EU public funds as well as funds from industry, bus operators, SMEs and research partners is to result in the long-term commercialization of the buses. We are convinced that they can be quickly resolved if they receive the necessary attention and the requisite resources.”

“If ever there was momentum for hydrogen, it is now”

“If ever there was momentum for hydrogen, it is now”

Interview with Dr. Jochen Köckler, chairman of Deutsche Messe

“We’re bringing people together.” With these words Dr. Jochen Köckler, board chairman of Deutsche Messe, described Hannover Messe’s ambition to once again be the place to go in real life for exhibitors and visitors in the industrial sector in 2024. This year, the focus will be even more on hydrogen than in 2023. Köckler emphasized the need for more togetherness by saying that the establishment of an H2 economy will “only succeed if people from politics and commerce work together.”

Advertisements

H2-international: Dr. Köckler, in 2023, hydrogen was already one of the five core topics you showcased during Hannover Messe. Will the presence of H2 technology increase again in 2024?

Köckler: We assume that we will experience a significant increase in the area of hydrogen. At Hydrogen + Fuel Cells Europe as well as in the other exhibition areas of Hannover Messe, the signs are pointing to growth.

Advertisements

H2-international: What will you, on the part of Deutsche Messe, do in order to underline the major importance of the topic hydrogen?

Köckler: With Norway as this year’s partner country, we are focusing on the topic of energy, and with that especially the topic of hydrogen. Germany and Norway agreed on an energy cooperation back in January 2023. In the joint declaration on hydrogen, the two countries reaffirmed their intention to establish a large-scale supply of hydrogen, including the necessary infrastructure, by 2030. Norway will therefore position itself with its joint stand in the energy section of the Hannover Messe.

H2-international: With Hydrogen + Fuel Cells Europe, one of the most important H2 trade fairs in Europe is part of your industry show. What can visitors expect there?

Köckler: Hydrogen + Fuel Cells Europe has been the meeting place for the international community for around 30 years. They meet there, they discuss all critical topics in two forums there. The Public Forum deals with current topics such as the question of what contribution hydrogen can make to reducing CO2. In the Technical Forum, new products and solutions are presented. Visitors who are interested in the topic of hydrogen will be given a comprehensive overview of technical innovations there but also of different fields of application.

But H2 solutions will be shown not only at the Hydrogen + Fuel Cells Europe in hall 13, but also in other areas of the Hannover Messe. We are pleased that increasingly more exhibitors with hydrogen-related and fuel cell-related products are represented. In total, we expect more than 500 companies in Hannover. This will give the hydrogen economy a real boost. Salzgitter AG, for example, is informing on climate-neutral production of green steel from green hydrogen in hall 13.

H2-international: Were you at the Hydrogen Technology Expo in Bremen? Are you impressed by how quickly this trade fair has grown and how professionally it has matured?

Köckler: When a topic gains in importance, new opportunities for trade fairs naturally arise. That is normal. Our advantage is that we have been working in the field of hydrogen and fuel cells for decades and, in all this time, have established a unique community. This appreciates the integration of Hydrogen + Fuel Cells Europe in Hannover Messe, as it has direct access to industry, the energy sector and politics here. No other trade fair in the world has this.

H2-international: What is your view of the German events sector? What are the advantages of Hannover Messe compared to now large European H2 trade fairs such as those in Rotterdam or Paris?

Köckler: Hannover Messe is a horizontal trade fair at which representatives from politics, commerce and academia exchange ideas every year. They cross-fertilize each other and work together to drive developments forward. In hall 2, for example, scientists from leading research institutes will be showing what products and solutions are being researched. In the other halls of the Hannover Messe, the focus is on specific applications. Politics will be even more strongly represented this year than in previous years, as in addition to the German chancellor Olaf Scholz, German economy minister Robert Habeck and Ursula von der Leyen, the president of the European Commission, are expected

The EU will be strongly represented overall. On the first day of the fair, the EU conference “EU as Home of the Decarbonised Industry” is taking place in the Convention Center on the fairgrounds in Hannover. At the event, industry representatives can exchange ideas with high-ranking EU politicians to discuss relevant topics such as the Green Deal. This possibility only Hannover Messe offers. Particularly in the energy sector is contact with politicians important, as all political decisions in this area have an impact on businesses.

Interviewer: Sven Geitmann

Just switch over?

Just switch over?

Hydrogen in the existing natural gas network

Whether hydrogen contributes to the clean heating transition will also depend on how easily existing natural gas networks can be converted. This is what Gasnetz Hamburg wants to find out in the project H2Switch100. For this, the company is looking at a very ordinary section of its existing network.

Advertisements

There’s nothing special about the small grid section in the southern district of Hamburg – exactly why the grid operator Gasnetz Hamburg chose it. In total 16 connections, including 14 normal households, a business park and a sports club. In the residential buildings, natural gas heating systems are installed. The business park and sports club operate a combined heat and power plant with natural gas. There are in the partial network new PE (polyethylene) pipes as well as old steel pipes and house connections from various decades. “The network section is representative for Hamburg’s gas grid,” said Sebastian Esser, project leader at Gasnetz Hamburg.

The aim is to find out whether other ordinary network sections could also be converted to hydrogen. The mix of materials and designs distinguishes H₂-SWITCH100 from the longer-running project H2Direkt of the company Thüga in Hohenwart. There, already in winter 2023/24, ten households and one commercial customer are to be supplied with pure hydrogen. However, only PE pipes, known to be suitable for hydrogen, are installed there (see p. 30).

Advertisements

Feasibility study with laboratory trials

In Hamburg, meanwhile, preliminary investigations are still pending. Together with the partners TÜV Süd and DBI Gas- und Umwelttechnik, Gasnetz Hamburg wants to demonstrate in a feasibility study within twelve months the integrity of the network for hydrogen. In the first step, samples from the original network will be sent to the lab. “For each component type that occurs in the network, we will examine at least one specimen,” said Esser.

In particular, these are individual gate valves and ball valves, but also entire service laterals and pieces of piping. In the laboratories of partner organizations, the components should then demonstrate that they are suitable for employment in a hydrogen network. Is there any embrittlement of the steel parts? Do the pressure regulators work? Are the shut-off devices tight? Answers to these questions are to be provided in the feasibility study running until August and funded by the investment bank IFB Hamburg (Hamburgische Investitions- und Förderbank).

“We’re very confident about the old components and the pipes themselves, as gas with about 50 percent hydrogen content was flowing through the pipes until the 1980s. Some components, however, were added later,” said Esser. The cost for this first project phase, according to Gasnetz Hamburg, lies “in the low six-figure range.”

Replace meter and burner

If the laboratory tests turn out positive, step 2 will follow: the actual conversion of the network. At issue will not be merely feasibility but also costs. Because even if the network is suitable for hydrogen, at the least the burner nozzles and the meters will probably have to be replaced. Lastly, the standard volume of gas must increase by a factor of three to compensate for the lower calorific value of hydrogen compared to natural gas.

“In the pipes themselves, this is no problem. Firstly, the hydrogen has a lower viscosity and therefore flows faster; secondly, we can slightly increase the pressure if necessary; and thirdly, the pipe diameters in the Hamburg gas grid are sufficiently dimensioned to accommodate the higher throughput,” erklärt Esser.

Many manufacturers already have up their sleeves heaters that can be operated with pure hydrogen, for the coming years. “As far as the combined heat and power plants are concerned, manufacturers have already announced their intention to make devices available for testing,” according to Esser. The additional costs incurred as a result of the pilot test will be borne by Gasnetz Hamburg. Thanks to this pledge, the supplier is being met with wide-open customer doors. “Even some neighbors who do not yet have a natural gas connection have now expressed an interest in hydrogen,” Esser recounted.

Hydrogen from planned industrial network

While the pipes and other components are very normal, the location of the network section is very special. It lies almost directly along the route for the already planned hydrogen network for the Hamburg industry with project name HH-WIN. Already in 2024, Gasnetz Hamburg wants to have built large parts of HH-WIN. In year 2027, the company intends to be able to supply the first hydrogen volumes. The confirmation that this will be an IPCEI (Important Project of Common European Interest), which is eligible for a particularly high level of funding, was still pending at the time of going to press.

“Compared to the needs of industry, the hydrogen requirement for the pilot project is minimal,” said Esser. The hydrogen for the industrial network is to come from three sources, which according to current announcements should all stand ready to be put into operation. On the one hand, there is the 100-megawatt electrolyzer that should appear directly in the industrial area at the site of the former coal-fired plant Kohlekraftwerk Moorburg. After some unrest within the project consortium, Hamburger Energiewerke wants to implement the project now together with asset manager Luxcara as majority shareholder. Commissioning is still targeted for 2026.

Secondly, hydrogen is to come to Hamburg via an ammonia terminal that Mabanft and Air Products announced at the start of 2022. By now, the project has undergone a nautical risk analysis, and the companies are in the process of compiling the documents for the approval procedure. As target year for commissioning Mabanaft still named 2026.

And thirdly, there is the European hydrogen core network of the grid operators. Both with the Netherlands and with Wilhelmshaven, Hamburg is connected by existing long-distance lines that are to be converted to hydrogen in the first project phase (see p. 30).

How low-CO2 the production of hydrogen will be in each case is difficult to say, as the regulations as well as the energy production and conversion are massively in motion.

Role of hydrogen in the heating transition unclear

If it turns out that the pipeline network could be easily repurposed, this does not make hydrogen the first choice for Hamburg’s heating transition. After all, in contrast to industry, there are many other options for heating buildings with significantly lower conversion losses. This consideration was once also the basis of the Wasserstoff-Roadmap (hydrogen roadmap), which prioritized – initially still scarce – green hydrogen for sectors that are difficult to decarbonize, including first and foremost industry. The environmental and energy office of Hamburg (BUKEA) also is following this strategy.

The Hanseatic city started collecting data for a heating register much earlier than most other large cities, and intends to present a complete heating plan already by 2024. In the city center, this will probably mainly be district heating, while heat pumps are popular in the peripheral areas.

“Certainly, converting the natural gas pipelines to pure hydrogen operation is not a solution for the whole of Hamburg,” acknowledged Michael Dammann, the technical managing director of Gasnetz Hamburg. “However, the further use of an already existing infrastructure with the green gas can be a sensible supplement to options like expansion of district heating and heat pumps in certain building structures and locations. With H₂-SWITCH100, we want to find out specifically what effort and costs are associated with such a changeover and whether there are technical hurdles.”

Author: Eva Augsten

Pilot plant for coating bipolar plates

Pilot plant for coating bipolar plates

At Fraunhofer FEP (Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik), a pilot plant for the coating of metal sheets and strips is being used for the efficient coating of bipolar plates for electrolyzers and fuel cells. The institute, according to its own statements, is a leader in the development of electron beam and plasma technologies. This expertise could also advance hydrogen technology in the future.

One example of this would be plasma-activated electron beam evaporation. This is a vacuum coating process that enables both high throughput and high coating quality. Exactly this combination is crucial for the coating of bipolar plates for electrolyzers and fuel cells. Because these have to function for a long time, stably, in a chemically aggressive environment. For this, they must receive coatings that reliably protect the plates and at the same time guarantee electrical conductivity.

Advertisements

Using electron beam evaporation, coatings to form a certain shape can be applied to the metal strip before these are stamped into bipolar plates, stated Burkhard Zimmermann, division manager for electron beam technologies at Fraunhofer FEP. The coating of the material is a crucial step for scaling the production with a roll-to-roll process. The challenge here is the formability of the coating. To ensure this, a dense macrostructure of the coating with the largest possible crystallites is required. Exactly these layer properties can be realized by the developed processes.

55 MW electrolyzer to decarbonize Saarland

55 MW electrolyzer to decarbonize Saarland

Hydrogen Regions series: HydroHub Fenne living lab

The power plant site in Fenne, Völklingen, a long-standing power generation facility which celebrates its centenary this year, is now the focus of Iqony’s plans to meet the future energy needs of the industrial region of Saarland. Owned by the STEAG Group, Iqony specializes in renewable energy, hydrogen projects, energy storage, district heating and decarbonization solutions.

Advertisements

The site is already a major energy intersection for the state of Saarland in southwestern Germany and is at the crux of the area’s district heating supply. Along with the present facility, the site will in future be home to HydroHub Fenne, an addition that will ensure it remains an essential part of Saarland’s energy system in the years ahead.

“Due to its existing infrastructure, we see the site as ideally suited to the building of a hydrogen production facility at this location. The existing grid connection allows us to draw sufficiently large amounts of renewably generated power to produce renewable hydrogen here, close to the point of use,” explains Patrick Staudt who is in charge of hydrogen at Iqony Energies, a Saarland-based subsidiary of Iqony.

Advertisements

The project will need to comply with the provisions of the European Union’s Renewable Energy Directive (RED) and its associated German legislation so that the hydrogen produced in Fenne can also be classified as climate neutral according to the strict criteria set out in EU law. Iqony’s own trading division will provide support to make sure this happens.

IPCEI notification is vital

Depending on the number of operating hours, HydroHub Fenne will produce approximately 8,200 metric tons of green hydrogen a year. “The current plan is to commission the plant in 2027 – assuming that the latest statements on the completion of the IPCEI notification by the European Union are correct,” says Patrick Staudt.

IPCEI stands for Important Project of Common European Interest. Iqony applied to have its Saarland hydrogen project recognized as an IPCEI back in spring 2021. Dominik Waller, who is responsible for project development alongside Patrick Staudt, explains the significance of the decision: “Our project needs to gain recognition as an IPCEI to allow the German government to support us financially with the investment. It’s impossible without IPCEI notification due to European law on competition and state aid.”

The prospects are looking good for the project in Fenne. A final decision is expected in Brussels by the end of 2023 – more than two years after the original announcement was due. “Once we have the funding authorization from the EU, it will then be a matter of the government putting specific funding in place. That should happen in the first quarter of 2024 which will mean we are on track in terms of the project schedule,” elucidates Patrick Staudt.

Public funding of the project is necessary because there is not yet a functioning market for hydrogen in general or for green, i.e., renewable, hydrogen in particular. Hydrogen can help industry or, for example, local public transport avoid carbon dioxide emissions. However, hydrogen finds itself in financial competition with other energy sources such as natural gas. In economic terms, hydrogen is no match for other energy forms at present, precisely because a competitive marketplace has still to develop.

“We see this as a classic chicken-and-the-egg problem: Potential hydrogen producers are holding back on their investment decisions, waiting for definitive signs of future off-takers. On the other hand, potential off-takers are not investing in converting their processes and plant technology while there is no guarantee that the required hydrogen will be available in sufficient quantities in the future. The only way of getting out of this dilemma is if public authorities provide investment security for both sides in the form of funding,” acknowledges Dominik Waller.

As for the level of funding for HydroHub in Fenne and the overall capital outlay, Iqony is not at liberty to divulge specific figures for competitive reasons. However, a few hundred million euros are expected to be invested in the project. “We won’t be able to give a more exact figure until the tender for the plant technology has been concluded,” says Patrick Staudt. Though this will only be when the funding letter has been received. According to Staudt, this once again shows how fundamentally important the conclusion of the IPCEI process is in order to progress the project further.

Fig. 2: Site development

Tenders on the market

Another stipulation resulting from the funding conditions for an IPCEI-designated project is that the hydrogen produced can’t simply be sold in the usual way. “We’re obliged to use tenders to bring our product to market so that all potentially interested parties have a chance to participate,” states Dominik Waller. This is where the Fenne location is said to be to the company’s advantage, since it already has a disused gas pipeline connection that could be employed in future to link HydroHub Fenne to the hydrogen supply network being created. Waller continues: “It’s also why we are paying close attention to the current discussion on the government’s plans for a core hydrogen network – and here we see the need for further improvement, especially for Saarland.”

This expressly applies not only to the delivery of the future electrolyzer in Fenne through the core network draft, which was presented by FNB Gas to Germany’s Federal Network Agency in November 2023, but also to the present STEAG and Iqony power plants in Bexbach and Quierschied (Weiher power plant). “At both sites we want to build new, hydrogen-compatible gas power plants – just like the government itself has set out in its 2030 target, so we can switch off old coal-fired units, meet our national climate goals while at the same time ensuring the security of supply if wind and solar power aren’t available in sufficient quantities,” says Andreas Reichel, CEO of STEAG and Iqony.

Reichel adds: “Current government plans do not yet envisage bringing the core hydrogen network to these two locations, which will be necessary to make this happen. That said, we’re grateful to the Saarland regional government for its reassurance that this is precisely what it will be campaigning for in Berlin.” If such efforts are successful, it would enable Iqony to build new power plant capacity in Saarland by 2030 which is urgently needed to guarantee security of supply as well as ensure the green transformation of power generation in Saarland.

In the medium and long term, it is then hoped that these and other new gas power plants will be run on hydrogen to provide a reliable, carbon-neutral supply of energy. If the core hydrogen network planned by the German government is not immediately routed to within close proximity of the sites, this will be completely impossible. Despite the unresolved issues, Iqony is optimistic about the realization of its hydrogen and power plant projects on the River Saar:

“We have the technical and commercial expertise from more than 85 years in the global energy industry, we have the right locations and we have proven through the construction and commissioning of one of the world’s most advanced combined-cycle power plants in Herne, Nordrhein-Westfalen, at the end of 2022 under difficult COVID-19 conditions, that we can carry out challenging large-scale engineering projects on time and on budget – if the regulatory environment allows us to do so,” concludes Andreas Reichel.

Author: Dr. Patrick Staudt, Dominik Waller, both from Iqony