Contact

Ballard – Prospects better than current market valuation

Ballard – Prospects better than current market valuation

The share price of Ballard Power is at an all-time low. The published figures for the fourth quarter of 2023 and the entire year 2023 paint a contradictory picture. The future prospects outlined by the board, however, give cause for optimism. Turnover rose in the fourth quarter to 46.8 million USD – an increase of 132 percent compared to the same quarter previous year. Order intake in the fourth quarter amounted to an impressive 64.7 million USD, and the orders on hand (backlog) decreased slightly by three percent to 130.5 million USD, as Ballard received more orders to execute (deliver). However, the orders on hand fell by 21.7 million USD, as there were delays with one customer. This order has not been lost, but cannot yet be counted.

Total turnover in 2023 lay at 102.4 million USD, so the bottom line for the year as a whole was a loss of 0.48 USD per share. These are, however, all snapshots that obscure the company’s prospects, since important markets for fuel cells are only at the beginning of a long phase of strong growth. In the USA, Ballard is working on the construction of a new production facility, as recently announced. And in Texas: There, 20,000 FC stacks, to start, are to be produced per year as well as the MEAs. Investment volume: 160 million USD, and subsidies amounting to 40 million USD are beckoning. Do you build such a plant if you don’t believe in the future of your own technology and its market? By no means.

Advertisements

FC buses really getting rolling

Impressive is the development in deliveries and incoming orders for FC modules for buses. An example: The bus manufacturer Solaris began its collaboration with Ballard in year 2013 with the purchase of two modules. In the following ten years, Solaris ordered 213 modules. In 2023 alone, it was already 365 modules. According to Ballard, this is just the beginning of a real wave of orders. Similar seems to be the case with cooperation partner for many years NFI: 141 modules in year 2023, which should only be the small beginning of the possible order volume, was the commentary.

NFI unites various bus brands under one roof such as New Flyer (70 percent market share for transit buses in the USA) but also Alexander Dennis (double deckers) and MCI. The annual production amounts to 8,000 buses. The partnership with Ballard has now been strengthened and already 100 FC modules ordered, to be delivered by 2024.

By year 2037, there are to be 650,000 buses globally, according to Information Trends, that will drive with hydrogen. In 2022, it was just about 4,000. Price parity for battery-electric and hydrogen-powered buses should be reached by 2030. Then, there should also be enough H2 stations and the price of hydrogen should be at parity with the price of diesel. Ballard is the clear market leader today and could remain so.

China – the giant awakens

The joint venture with Weichai for the production of FC modules for trucks and buses has still not really got going. Regulatory conditions and support programs as well as initiatives by individual provinces make Ballard confident that things will really get going soon. There, 20,000 complete FC systems (power range from 50 to 200 kW) per year can be built. That corresponds to an annual capacity of 2 GW in FC power. In year 2023, in China, 7,500 FC vehicles were sold – altogether 7,300 FC buses and 13,700 FC trucks. Through special support measures by the province Shandong (where the production is located), the JV will finally get started in 2024.

From the United Kingdom, Ballard has reported an order for 15 MW FC capacity. It entails 150 FCmove modules for an unnamed customer with which a letter of intent for another 296 FCmove modules with delivery by March 2026 exists. It involves off-grid electricity generation from renewable energies. At the same time, Ballard has reported the successful completion of test series for FC backup systems for data centers of Caterpillar and Microsoft. The last could be the basis for major orders.

Has the share price bottomed out?

The share price increase from 1 to 2 USD US-$ (2018 to 2020) to over 40 USD at the end of 2021 and the subsequent decline in the price to currently around 2.70 USD should now lead to a sustained upswing again. This describes the entire H2 ecosystem on the stock exchange: It starts with technological developments that lead to expectations on the stock market, which is reflected in the sharp rise in the share prices of listed companies in the sector.

This was the case at the end of 2021. Then, it came little by little to sharp falls in share prices, related to increasing disillusionment among investors. In accordance with to the Gartner hype cycle, the FC and H2 sector is now entering a long-term upward trend, as the markets are gaining momentum. With hydrogen, this entails production, transport, uses, markets, and much more. It is clear that this is a disruptive new technology and industry.

Combining this analysis with the long-term Elliott wave chart results in a picture in which the Ballard share is now bottoming out (a current sell-off as the end of the downward spiral), just at a time when investors almost no longer want to believe in the company’s success, which is expressed in the very low share price and the market valuation of about 0.8 billion USD with, at the same time, 751 million USD in the bank. Today we have real figures, if you only look at the more than 1,680 buses that drive with Ballard technology. The hydrogen costs per 100 km are sinking massively. The modules are also becoming increasingly competitive thanks to cost-cutting programs and material optimizations – also in comparison to battery-electric and diesel-powered buses.

If the cost of diesel fuel is on average 240 USD per day and battery-electric is 16 USD for electricity per day, then the fuel cell (hydrogen) is in between at on average 85 USD per day. The charging times of a battery-electric bus must also be taken into account, however, whereas vehicles can be refueled in just a few minutes with hydrogen or diesel. Especially for certain applications (with long distances, hilly terrain, weather influences), the hydrogen bus is superior to the battery-electric bus.

In addition, hydrogen is becoming increasingly cheaper. Whereas the average price per kg has been still around 10 euros up to now, an average of 6.48 EUR should be feasible in one to two years, in two to three years 3 to 5 EUR per kg, and in 10 to 15 years, so they say, it could even be as little as 1 to 2 USD per kg. The total cost of ownership for the hydrogen bus will fall massively, and diesel will need to be replaced.

Ballard is calmly focusing on the scaling of its technologies and the imminent ramp-up of important sectors such as heavy transportation. Already in the current year 2024, incoming orders for FC modules for buses are set to rise sharply, where the turnover is expected to be split 30 to 70 percent between the first and second half of the year. Order intake will have an impact on the share price, and the next quarterly figures less so.

Summary: Ballard is very well positioned in terms of its finances. With over 750 million USD liquidity, the company will be able to manage its future growth (expansion of existing capacities, geographical expansion) very well from its own resources. Key markets such as FC buses and trucks are in the starting blocks and will ensure very high growth for the company in the long term. That this all is taking longer than expected is normal for the development of a new market. The year of the actual breakthrough (profit zone) will be 2025/26, as the most important framework conditions (including availability of H2 infrastructure) will be created and the regulation as well as support programs worldwide (USA, EU and Asia) will take full effect in a positive sense. Ballard is likely to be one of the winners of this development. The year 2024 will be characterized by rising order intake. Buy and leave alone. Investment horizon: at least two to three years.

Disclaimer

Each investor must always be aware of their own risk when investing in shares and should consider a sensible risk diversification. The FC companies and shares mentioned here are small and mid cap, i.e. they are not standard stocks and their volatility is also much higher. This report is not meant to be viewed as purchase recommendations, and the author holds no liability for your actions. All information is based on publicly available sources and, as far as assessment is concerned, represents exclusively the personal opinion of the author, who focuses on medium- and long-term valuation and not on short-term profit. The author may be in possession of the shares presented here.

Author: Sven Jösting, written March 15th, 2024

 

Is exponential growth slowing down?

Is exponential growth slowing down?

Fuel Cell Industry Review 2022

Year 2022 saw fuel cell shipments creep up over 2021 numbers, though the latter was a remarkable year. When 2021 exceeded 2020’s MW numbers by over 70%, we thought we were finally seeing the uptick that had been anticipated – the classic “hockey stick” pattern. But the structure of the industry – and its reliance on only a few players for the majority of shipments – means that growth comes in spurts.

E4tech’s eighth annual Fuel Cell Industry Review showed just under 86,000 units shipped in 2021, or just over 2,300 MW, even with the COVID pandemic still hanging over markets. But this rapid growth was largely due to the activities of two vehicle OEMs, Hyundai and Toyota, together accounting for over 70% of the megawatts. But even after taking these out of the picture, growth continues – slowly but surely.

Advertisements

E4tech is now part of ERM and the team is continuing to research and write the Review. The ninth FCIR shows that 2022 shipments were similar to the year before – with the continued but slow growth still led by Hyundai and Toyota, at over 60% of MW shipments, and by fuel cell buses and trucks into China. In 2022, we estimate nearly 89,200 fuel cells to have been shipped, amounting to almost 2,500 MW.

Analysis by region

For vehicles (which by far is the largest contribution, at 85% of all shipments by megawatts), much of the demand was localized to China and South Korea. China saw over 4,150 units being shipped, across all modes of mobility (including forklifts, now slowly taking off in the country), while South Korea saw nearly 10,400 deployments, dominated by Hyundai’s Nexo. Together with 831 Toyota Mirais going into the home market of Japan, Asia now accounts for around 15,600 units into transportation markets, or 17% of global shipments of fuel cells by number, but rather more impressively some 1,500 MW (60%) of the shipped megawatt count.

Hyundai is benefitting from the 50% subsidy for fuel cell vehicles in South Korea. South Korea is now also the single largest market for large stationary units, in CHP and prime power modes. Stationary shipments into the country grew from 147 MW in 2021 to 196 MW in 2022 (8% of the global MW count). These numbers illustrate the importance of South Korea for fuel cell shipments – and, moreover, the key role of sustained policy and subsidies in helping fuel cell companies and OEMs to achieve volume.

In context of the Japan’s Ene-Farm program, across all markets (stationary, mobility and portable), Asia accounts for 60,850 units (two-thirds of global shipments) and 1,770 MW (71% of global shipments). Behind Asia is North America, with around 14,550 fuel cell shipments (nearly 485 MW, or 19% of global shipments in megawatts), led by Toyota and Bloom Energy shipments to the United States. Europe accounted for roughly 13,250 of fuel cell shipments in 2022, down from just over 14,000 units in 2021. The fall in unit shipments followed the completion of the PACE program of the US Inflation Reduction Act and the imminent closure of KfW-433 grant funding by Germany. In megawatts, the count slightly increased, from a corrected 204 MW in 2021 to 228 MW in 2022, about 9% of the global market. Fuel cell vehicle shipments to Europe are lower than for Asia and the US because of the low subsidies provided by the national governments.

Analysis by application

Fuel cells for mobility, primarily cars, continued to dominate the overall count. Across all modes of mobility (including forklifts), 85% of shipments (2,100 MW) fell into this category in 2022, 150 MW more than in 2021. In units, mobility accounted for 35% of shipments in 2022, a slight fall from 2021’s share. So, the message is transportation is growing, but other fuel cell markets are growing too.

The next main contributor to vehicle shipments is China, with a record 3,789 units (buses and trucks) being shipped over 2022. Together, these are estimated as contributing 387 MW to the overall count in 2022.

While nearly 1,000 fuel cell buses were shipped into China in 2022, fewer came to Europe in 2022 (only 99 registrations). According to CALSTART figures, as many as 82 new fuel cell buses were fielded in the US in 2022, mostly in California. Outside China, fuel cell truck shipments globally in 2022 remained minuscule. This could change, given the business plans of Cellcentric, Plastic Omnium, Hyzon and others.

Fuel cells for ships and for aviation remains exploratory, now with a growing emphasis on propulsion rather than hotel loads or auxiliary power. Forklifts continue to be a major application for fuel cells, albeit with fewer unit shipments in 2022 (over 9,650 units) compared to 2021 (over 13,400 units). Prime power and CHP comprise a large part of the remaining demand, in unit numbers and in MW. By number, micro-CHP still dominates, with Japan leading with its Ene-Farm program. ACE shows 42,877 units being installed in 2022, over 3,000 units more than the previous year. Outside Japan and Europe, micro-CHP shipped in negligible numbers, further demonstrating the criticality of country-to-country policy in supporting fuel cells. Together, prime power and CHP across the power range contributed 364 MW shipments in 2022, up from 335 MW in 2021. Although a growing emphasis for developers, fuel cells for grid support and off-grid power has remained subdued, at 14 MW (for both years). Shipments of portable fuel cells (including smaller ported APUs, less than 20 kW in power output) showed an increase, from just over 6,000 units in 2021 to nearly 8,000 units in 2022. These are supplied globally, but most feed into European and North American industrial and consumer markets.

Shipments by fuel cell type

PEM continues to outweigh other fuel cell types in shipments, both in volume and in MW capacity. Of the nearly 90,500 fuel cells shipped in 2022, over 55,000 were PEM. By megawatts, PEM fuel cells recorded 2,151 MW, 86% of the overall volume of shipments.

High-temperature PEM, generally utilizing methanol rather than hydrogen as a fuel, continues to grow, led by Advent Technologies. While still a fraction of overall PEM units at present, shipments are set to grow more aggressively given the improved logistics and increased runtimes enabled by the methanol fuel. DMFC (direct methanol) had a good year, with nearly 8,000 units shipped over 2022, mostly from SFC Energy.

SOFC (solid oxide) grew to nearly 27,000 units in 2022 (mostly micro-CHP, by number). The MW count grew from 207 MW in 2021 to 249 MW in 2022. Much of this is attributable to stronger sales from Bloom Energy. PAFC (phosphoric acid fuel cell) shipments fell, and while no new MCFC (molten carbonate) system placements were recorded over 2022, FuelCell Energy continues to produce significant volumes of stacks, for mid-life refurbishment of systems. AFC (alkaline) shipments increased to over 100 units in 2022, way down on other fuel cell types despite the lower cost potential, both for the fuel cell stack and the hydrogen purity requirement.

Summary

Fuel cells had a good year in 2022. Despite shipments being dominated by a few key suppliers into just a few countries, we are at last beginning to see shipments into Australia and South America, buoyed by the greater interest in hydrogen generally. And while interest is helpful, it remains the case that fuel cells have yet to break through the high capital cost threshold, and (for the hydrogen-fueled units) high fuel prices. We are slowly seeing this happen, through big changes to the supplier landscape, the IPCEI initiative in Europe, significant capacity upgrades to fuel cell production, and the Inflation Reduction Act in the US. But for now, the message remains the same: sustained support from governments is still needed to allow fuel cells to fully support the energy transition. Some fuel cell companies are now also purposing their designs to electrolysis, to help push the market, and with it the hockey stick.

ERM’s Review, a digest of the year’s activity, together with an analysis of fuel cell shipments by region, type and application year on year, is available at http://FuelCellIndustryReview.com. The 2022 edition is delayed, but coming soon. We would like to thank all the fuel cell shippers who graciously provide shipment numbers to us each year, which helps underpin our review.

Author: Stuart Jones, ERM, London, UK, Stuart.Jones@erm.com

On the way to becoming a green hydrogen partner

On the way to becoming a green hydrogen partner

Oman aims to score points with H2 infrastructure

Wind, sun and loads of expertise – these ingredients are to be used intensively in Oman to produce green hydrogen in the future. In contrast to other Gulf states, the Sultanate is making great strides in this regard. The green hydrogen is to be exported, but also used locally. First projects are underway and the infrastructure is being expanded. Experts see Oman as a promising partner for the clean energy transition in Germany.

Advertisements

The excavators have rolled in; the sand has been swept out of improvised offices. The go-ahead has been given for a steelworks in the industrial port of Duqm in the Gulf state of Oman. Starting 2027, green hydrogen is to be produced here. “Vulcan Green Steel” is what the Indian owners from the family Jindal have named this business branch, for which a separate quay will be built to ship the products – directly opposite the other quays, from which containers and vehicles are transported across the Arabian Gulf. Customers for the green steel Jindal sees in Europe, for example in the German automotive industry.

The infrastructure in Duqm (see photo on p. 4) is growing rapidly, and the new steel plant is one of the building blocks of Oman’s future, which is to logically develop in the direction of green hydrogen. For the export, according to Dr. Firas Al-Abduwani of Oman’s energy ministry, ammonia and methanol are currently being considered as the main means of transport. Part of the new energy source, however, they want to use within the country. Other parts and products such as green steel are to be shipped via the industrial ports in Sohar, Duqm or Salalah in southern Oman, for example to Germany.

Future plans with the best prerequisites

Experts from the International Energy Agency (IEA) and the German foundation Stiftung Wissenschaft und Politik (SWP, see info box) see ideal conditions for the future plans of Oman: more than 2,000 kilometers of coastline, along which the wind blows around the clock, and eight to more than ten hours of sunshine per day.

Furthermore, the country has leading expertise in hydrogen production, well-developed ports with strategic positions and plants for desalinating seawater. These usually work with reverse osmosis to filter out dissolved substances. The associated costs for hydrogen production Dr. Dawud Ansari from the research group Globale Fragen (global questions) of SWP estimates as very little – he talks of about one percent of the cost per kilogram hydrogen.

The state institution Hydrom, however, does not want to commit itself to this yet. Hydrom has been developing a master plan for the green hydrogen sector in Oman since autumn 2022 and is creating the conditions for production. Also currently being discussed is the use of treated wastewater from the oil and gas industry.

Oman is pressing ahead with the development of green hydrogen as a future energy supplier so that it will be economically no longer predominantly dependent on dwindling oil and gas reserves. Also to be supported will be the country’s climate neutrality plans that the ruling sultan Haitham Bin Tarik set out in Oman Vision 2040. This could make the Sultanate a promising candidate for supporting the energy transition in Germany.

According to the Wuppertal Institut, a think tank for sustainability research, only up to one sixth of the expected H2 demand in Germany can be covered by domestic production in 2030. The majority will have to be imported – partners for this are being sought worldwide.

Pioneering work begins with five local consortia

Against this background, Oman is bringing itself in position: The strategy of Hydrom would allow for Oman to produce one million metric tons of green hydrogen annually starting 2030, and by 2050, it is to be around 8.5 million tonnes. By then, Oman wants to have fully reduced its CO2 emissions and additionally to have created around 70,000 new job positions. Estimated investment cost according to Hydrom and the energy ministry: around 150 billion US dollars.

To achieve the ambitious goals, pioneering work is now required: For example, it is important to attract companies that develop the corresponding technology. Electrolyzers for industrial processes that use sun, wind and water must be built. Furthermore, plans for sustainable, effective and economical business models are still needed.

The first five international consortia have just been awarded contracts by Hydrom to produce green hydrogen and ammonia for export and domestic consumption on a total area of around 1,500 square kilometers (580 sq mi) in the region Duqm. A further 1,800 square kilometers of land are currently being made available in southern Oman, in Salalah, via a second public tender. This auction is running until April 2024.

Potential for German companies

German companies are already involved in development in Oman. But Oman’s high-flying plans offer much more potential. This is the view of, for example, Dr. Abdullah Al-Abri, Omani consultant at the IEA – and hopes that the cooperation that was agreed in a Joint Declaration of Interest with Germany in summer 2022 will gain momentum.

“So far, the potential customers for green hydrogen from Oman are still mainly located in Japan or Korea,” opined the expert. Dr. Ruth Prelicz, expert for hydrogen and renewable energy systems at the chamber of commerce AHK Oman, however, stressed: “In summer 2023, the German energy supply company SEFE (Securing Energy for Europe GmbH) concluded an offtake agreement for liquefied natural gas (LNG) from Oman. This contract for LNG deliveries serves to build trusting business relationships and is also seen as a precursor to later deliveries of green hydrogen.”


Alok Bisen, who works for the Indian steel company Jindal, showing the construction area for green steel production in Duqm

Ruth Prelicz is observing the development on site: She is supporting the hydrogen foreign office Wasserstoffdiplomatie des Auswärtigen Amtes (H2Diplo) and the energy dialogue of the German economy and climate protection ministry (BMWK) in Oman. The expert sees a number of opportunities for German companies to benefit from cooperation with Oman in the field of green hydrogen: “It’s not just about the acceptance of the end product. Oman is also interesting as a market for German high-tech technology. Siemens Energy and ThyssenKrupp are established as potential suppliers of electrolyzers in Oman. And in the area of hydrogen transport, the Bavarian hydrogen experts of Hydrogenious as well as MAN Energy Solutions have presented their technology in the field of liquid organic hydrogen carriers (LOHC) and methanol.”

Also companies specializing in hydrogen compressors, pipelines or measuring devices, in her view, will be in demand in the country in the future. Further opportunities for German companies could be in the areas of green hydrogen certification as well as training and education. According to the expert, TÜV Süd, for example, is already active in this in Oman.

Oman’s stable position in the region

That cooperation with the Sultanate is not only worthwhile from a trade policy perspective stressed Dr. Dawud Ansari of SWP. For him, closer (energy) relations with the Sultanate as Germany’s central partner in the region bring further advantages: “Germany has an interest in strengthening relations with and the economy in Oman, as the Sultanate constitutes a cornerstone of regional peace processes. Oman itself is very stable and safe – both in terms of trade relations and domestic policy and in relation to its neighbors. The Yemen conflict and other regional disputes will, thanks to Oman’s diplomatic fortitude and border security, not spread to the country.”

The research for this text was supported by Park Inn by Radisson Hotel & Residence Duqm as accommodation. https://www.radissonhotels.com

Further reading:

Current information from the state institution Hydrom, which is developing a master plan for the green hydrogen sector in Oman: hydrom.om

Vision 2024 of the Sultanate of Oman: oman2024.om

More information about the port in Duqm, where Oman’s first green hydrogen projects will appear: https://portofduqm.om

Stiftung Wissenschaft und Politik, Publikationen, Dawud Ansari: Wasserstoff aus Oman für Deutschland und die EU – nicht nur aus energiepolitischer Perspektive sinnvoll. SWP-Aktuell 2023/ 9.3.2023 https://www.swp-berlin.org/publikation/wasserstoff-aus-oman-fuer-deutschland-und-die-eu

Die Geopolitik des Wasserstoffs. Technologien, Akteure und Szenarien bis 2040. Studie von Jacopo Maria Pepe, Dawud Ansari und Rosa Melissa Gehrung, Stiftung Wissenschaft und Politik, 16.11.2023. https://www.swp-berlin.org/publikation/die-geopolitik-des-wasserstoffs

The International Energy Agency (IEA), a cooperation platform in the field of research, development, market introduction and application of energy technologies, has commented on Oman’s great potential for the production of green hydrogen: https://www.iea.org, subitems News / Oman

The chamber of foreign trade Außenhandelskammer (AHK) Oman maintains a representative office of German industry in Oman’s capital Muscat. There, Sousann El-Faksch and Dr. Ruth Prelicz (ruth.prelicz@ahkoman.com) give information on the topic of green hydrogen: https://www.ahk.de/oman

Author: Natascha Plankermann

Frustration over continuing uncertainties

Frustration over continuing uncertainties

Interview with Jorgo Chatzimarkakis, CEO of Hydrogen Europe

There is a lot that needs sorting out at a political level: A large number of industry representatives are waiting for politicians in Brussels and Berlin to put regulatory safety nets in place so they can make appropriate decisions about their investments. H2-international asked Jorgo Chatzimarkakis, Europe’s “Mister Hydrogen” and CEO of Hydrogen Europe, about the European Union’s revised Renewable Energy Directive (RED III) and its Important Projects of Common European Interest (IPCEIs). The interview also touched on Germany’s 37th Ordinance on the Implementation of the Federal Immission Control Act (37th BImSchV) as well as the recently revealed problems with fuel cell buses and their refueling stations. His guest article about H2Global appears on page 48.

Advertisements

H2-international: Mr. Chatzimarkakis, fortunately the adoption of RED III didn’t take as long as RED II. What do you think of the outcome?

Chatzimarkakis: The adoption of RED III is a positive step for the hydrogen industry in Europe. It provides clarity and the basis for funding and developing hydrogen projects and applications. That said, it’s important that it’s swiftly implemented so that the sector has the necessary planning certainty to make investment decisions.

The extremely arduous procedure for IPCEI projects has been a massive headache for the H2 industry. Apparently there should now be some movement. Can you confirm that and shed some light on it?

Yes, the delays in IPCEI projects have troubled the industry, caused by bureaucracy at either a European or national level. The consequence has been that funding recipients have to wait too long and then they back out. That harbors the risk that projects could be carried out in the USA, for example. We can’t afford to lose any time as the creeping deindustrialization process is accelerated by such unnecessary delays. To counteract this, I was able to get things moving for one process or another. The IPCEI initiatives are crucial for the development of the hydrogen economy and the funding of innovation. It’s important that the bureaucratic hurdles are surmounted so these projects can move forward.

What feedback do you get from your members? Do they regret having applied in the first place?

Some of our members have expressed concerns about the long delays for IPCEI projects. They have invested considerable resources in the applications and are waiting for the green light in order to move their projects forward. It’s understandable that they are frustrated by the continuing uncertainties.

What’s your advice? To forgo funding and start something quickly themselves or to continue to wait?

The decision whether to forgo funding and start independently or to wait depends on each company’s individual circumstances. However, it’s important that funding is released as quickly as possible to support urgently needed hydrogen projects and accelerate rollout.

Sadly, the production of green hydrogen is still associated with high capital expenditure and financial risks. Despite funding, the long-term operation of a plant for producing green hydrogen on an industrial scale is often not viable. That’s why we still need alternative hydrogen production pathways which can produce more competitively.

Let’s turn our attention to Germany: Many have been waiting a number of years for the 37th BImSchV. To your knowledge, when will there be a new ordinance and what, to your knowledge, will it contain?

It’s regrettable that the revision of the 37th BImSchV is taking so long. Unfortunately, I don’t have any precise information on when a new ordinance is expected or what it will contain exactly. However, it’s essential that the ordinance takes into consideration the needs of the hydrogen industry and the requirements for reliable and efficient hydrogen production.

Allow me to ask two or three questions about the open letter that Hydrogen Europe recently received (H2-international has a copy). In it, various high-ranking industry representatives from the JIVE, JIVE 2 and MEHRLIN project consortium ask for an “improvement to the hydrogen refueling infrastructure for FC buses.” Did you receive this letter?

Yes, we received the open letter. We take the concerns of the industry representatives very seriously. Improving the hydrogen refueling infrastructure for fuel cell buses is of critical importance to support the spread of eco-friendly means of transportation. Waste-to-hydrogen, in particular, could be a piece in the puzzle. That’s because the costs of production, for example from biogas, are two to three euros per kilogram. Combined with the GHG quota, that quickly becomes viable.

The letter also says: “The members of the consortium are convinced that FC buses can be a practicable option for public transport throughout Europe. They have proven themselves to be reliable and have been well received by both passengers and bus drivers. However, the consortium is of the opinion that the technical readiness and the capabilities of hydrogen refueling stations (HRS) fall well below the requirements for the operation of an FC bus fleet. The consortium believes that this represents a huge obstacle and a limitation for the commercialization and proliferation of FC buses and could in fact represent a challenge for FC vehicles across Europe and perhaps, indeed, the world.” You are urged in this letter to recognize the significance of this problem and to conduct talks with industry about possible solutions as a matter of urgency. What’s your response to this?

The consortium’s concerns are justified. We’re supporting efforts to improve the hydrogen refueling infrastructure for fuel cell buses. For instance, we and our member companies are actively involved in standardization in this area – for example with ISO and UNECE. It’s important that industry and political decision-makers work together to find solutions to this challenge and to ensure that fuel cell buses are able to realize their full potential.

What’s more, AFIR [Alternative Fuel Infrastructure Regulation] is sure to have a very positive effect on the ramp-up in refueling. It obliges EU member states to build hydrogen refueling stations at central European intersections and in city hubs. We’ve calculated that up to 600 refueling stations in total will need to be built within the EU by 2030. That will give a considerable boost to users of fuel cell buses.

Does that mean you will address this problem – including in the interests of your association members?

Yes, Hydrogen Europe is actively addressing this issue and is advocating for the improvement of hydrogen refueling infrastructure. We are committed to representing the interests of our association members and driving forward the development of the entire hydrogen economy in Europe.

Interviewer: Sven Geitmann

Extracts from the open letter

“If there is something needed for the commercial operation of buses in public transport systems, then it is an HRS that is reliable and available for operation. This basic standard is frequently unmet at current refueling units. Almost all sites in the JIVE, JIVE 2 and MEHRLIN projects experienced considerable downtimes for the refueling unit, meaning that vehicles were not deployable.”

“It took many months to achieve a reliable and robust refueling process, and during that time numerous faults occurred in the course of the refueling process which took considerable time to be remedied by the supplier – and this despite the inherent redundancy of the station.”

“Consortium members report problems with a range of essential hydrogen dispensing equipment. These problems are surprising given the extensive experience of hydrogen handling in industry.”

“Furthermore, the problems and comments are similar to those reported in numerous projects in the early 2000s. It is remarkable and extremely disappointing that the performance of compressors for the refueling of FC buses has clearly not yet reached the level necessary for the operation of a commercial fleet.”

“The project sites have reported that data transmission is often interrupted which causes refueling to stop or leads to refueling taking longer than necessary. The sensor in the nozzle is not robust. If it fails, the entire fuel nozzle unit has to be replaced at a cost of EUR 10,000.”

“Significant problems occurred in buses when tanks were converted from Type 3 to Type 4. At least in some cases, this appears to be due to information from the bus manufacturers not being passed on to the HRS OEMs.”

“Indeed, the HRS availability targets of above 98 percent had already been met, e.g., by some sites in the CHIC project; yet this level of performance was only achieved with considerable deployment of staff and financial input, in other words with higher costs.”

“Commercial operators require their vehicles to be available whenever and wherever they are needed (and at reasonable operating costs). This is perhaps the most important variable considered by operators if they are contemplating investments in new or additional vehicles. If they cannot be certain that the vehicles can be refueled when needed, none of the plans for expanding the fleet of FC buses will go ahead.”

“It is our opinion that the continuing refueling problems must be resolved if the EUR 407 million that have been invested in FC buses over the past 20 years from EU public funds as well as funds from industry, bus operators, SMEs and research partners is to result in the long-term commercialization of the buses. We are convinced that they can be quickly resolved if they receive the necessary attention and the requisite resources.”

Picea 2 relies on lithium instead of lead

Picea 2 relies on lithium instead of lead

HPS presents new product generation

The company HPS Home Power Solutions has unveiled a new generation of its seasonal energy storage system. The Picea 2 now uses lithium batteries, which makes installation in the home easier due to the lower weight. With twice the power, the appliance is also equipped for e-mobility and heat pumps.

Advertisements

The new research and development site is located almost directly next to the youth center of FC Union Berlin in an industrial area in Berlin-Niederschöneweide. In the future, not only kickers but also installers and partners will be trained there. But not only that; the new version of the seasonal storage unit is also to be manufactured there. “On-site installation is even more cost-effective for us, as the transport costs come out lower,” stated company founder and CEO Zeyad Abul-Ella – left in December 2023 and since then only still a shareholder – at the first presentation of the new device to an exclusive circle of visitors.

Nine years after its founding and a good five years after the first presentation of a Picea model at the trade fair Energy Storage in Düsseldorf 2018, there is a whole series of further developments of the product. The device has needed to change with the times. With Picea 2, the output power has therefore doubled to 15 kilowatts, which makes it possible to cover higher energy requirements, for example for an e-car or a heat pump. In the event of a power failure, the backup power supply ensures that important installations in the household are supplied with a stable power supply. “For each of the three phases of the three-phase current, the device now delivers five kilowatts of power,” explained Abul-Ella.

The new generation of the storage system also offers an increased connected load for photovoltaic systems – picking up on the trend in the market. Through new power electronics, according to HPS, efficiency was able to be increased, which means that higher levels of self-sufficiency are now possible. The energy utilization efficiency (Nutzungsgrad) including heat utilization is 90 percent. The electrical efficiency is between 35 and 40 percent.

Cooperation with competent partners

The device now uses an external inverter from SofarSolar, in which the software for the storage system has accordingly been adapted. “We do what we are really good at. For all other components, we rely on cooperation with partners,” said trained civil engineer Abul-Ella. The latter applies to both the inverter and the lithium batteries.

The AEM electrolyzer comes from the German-Italian company Enapter. The abbreviation AEM stands for anion exchange membrane. The technology uses more cost-effective materials such as steel instead of titanium and combines the advantages of alkaline electrolysis with the flexibility and compactness of PEM electrolysis. Enapter co-founder Vaitea Cowan was also present at the product launch, and Hans-Peter Villis, former EnBW (Energie Baden-Württemberg AG) director as well as partner from the very beginning and today chairman of the supervisory board at HPS.

Specifications for developers

“A tough requirement for the technical developers was to retain the dimensions for the slide-in boxes for the electrolyzer and the fuel cell in the energy center of the original Picea,” stressed Abul-Ella. The first Picea customers are pioneers. They should therefore also benefit from the innovations and be able to switch to them easily at a later date. A further development in the electrolysis module cools the hydrogen to 5 °C. This makes it possible to take in four to five times the amount of gas, because the moisture is now removed before storage.

New are also status displays that, at the touch of a button on the device or via the app, provide information about important system and storage statuses. The system always consists of an energy center and a hydrogen storage tank with a compressor that is installed outside the house on a concrete foundation. This foundation is absolutely essential.

The energy center unit has slimmed down considerably and now weighs 70 percent less: instead of 2.2 metric tons, now only 700 kilograms (1540 lbs). Reason is the switch from lead-acid to lithium batteries from the company Pylontech. The overall height has also reduced by 15 centimeters compared to its predecessor to 1.85 meters (6.07 ft). Doesn’t sound like much, but can be decisive for installation in a basement.

The Picea 2 costs at minimum 99,900 euros

The Picea module converts the surplus solar power in summer into hydrogen. In this way, large amounts of energy can be stored efficiently and over long periods of time. In winter, the gas, via a fuel cell, can be converted back into electricity and heat. The long-term storage capacity is up to 1,500 kilowatt-hours of electricity. In the smallest version with 16 gas cylinders, it is 300 kilowatt-hours.

The smallest version of the Picea 2 costs 99,900 euros. The gross price is the same as the net price, as the sales tax for the device, including storage units, is zero percent. With more storage capacity, the cost rises to up to 140,000 euros. This applies to a new construction where the installation can also be planned. In existing buildings, it can be a bit more complicated, so the amount may increase to up to 160,000 euros.

The demand seems to be there. Because over 500 devices of the first generation have been sold to date. More than 100 are installed at customers’ spaces.

Author: Niels Hendrik Petersen

Weichai Power: Strong share price increase

Weichai Power: Strong share price increase

The share price of Weichai Power has risen by almost 50 percent in the last few weeks. The reason is the partnership with BYD in the electrification of large vehicle fleets. A perfect joint venture, it seems. Weichai Power with BYD could – my guess – be pushing the door open to fuel cells, since alongside battery-electric trucks and other commercial vehicles, the fuel cell is perfect for long-haul journeys.

Weichai has a joint venture with Ballard Power in China (51:49), with a capacity of already 20,000 FC modules per year. And Weichai will be one of the main beneficiaries when in China a large subsidy program for fuel cells and hydrogen comes – maybe 2024 or 2025. Weichai is China’s largest diesel engine manufacturer, which is now moving towards e-mobility – comparable with Cummins Engine in the USA. Weichai is also cooperating with Bosch.

Advertisements

Disclaimer

Each investor must always be aware of their own risk when investing in shares and should consider a sensible risk diversification. The FC companies and shares mentioned here are small and mid cap, i.e. they are not standard stocks and their volatility is also much higher. This report is not meant to be viewed as purchase recommendations, and the author holds no liability for your actions. All information is based on publicly available sources and, as far as assessment is concerned, represents exclusively the personal opinion of the author, who focuses on medium- and long-term valuation and not on short-term profit. The author may be in possession of the shares presented here.